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Abstract— The dynamic nature of the real world is one of
the main challenges in robotics. The first step in dealing with
it is to detect which parts of the world are dynamic. A typical
benchmark task is to create a map that contains only the static
part of the world to support, for example, localization and
planning. Current solutions are often applied in post-processing,
where parameter tuning allows the user to adjust the setting
for a specific dataset. In this paper, we propose DUFOMap,
a novel dynamic awareness mapping framework designed for
efficient online processing. Despite having the same parameter
settings for all scenarios, it performs better or is on par with
state-of-the-art methods. Ray casting is utilized to identify and
classify fully observed empty regions. Since these regions have
been observed empty, it follows that anything inside them at
another time must be dynamic. Evaluation is carried out in
various scenarios, including outdoor environments in KITTI
and Argoverse 2, open areas on the KTH campus, and with
different sensor types. DUFOMap outperforms the state of the
art in terms of accuracy and computational efficiency. (See
https://kth-rpl.github.io/dufomap for more details.)

I. INTRODUCTION

Point clouds are widely used in robotics and other do-
mains like surveying and architecture. Many core robotics
components assume a static environment, but when this
assumption is violated, it can lead to issues in path planning,
mapping, and localization. Dynamic awareness is crucial for
robust operation. An example from surveying illustrating the
problems caused by dynamic objects is shown in Fig. 1. A
point cloud model of a built environment, created using a
3D laser scanner (Leica-RTC360) and often used as ground
truth for SLAM [1], [2], [3], can be severely compromised
by moving people, as seen in the top right of the figure.

In this work, we propose DUFOMap, a dynamic awareness
method based on UFOMap [4]. The framework accumu-
lates point clouds into voxel maps. During integration, ray
casting is used to identify the so-called void regions that
at some time were empty. The classification of dynamic
points can then be done by looking for points that fall into
these void regions. Special care is required to account for
localization errors and sensor noise. We present extensive
experimental validation across multiple datasets, sensors, and
scenarios, showing the generality, computational efficiency,
and broad usability of DUFOMap. Our approach is open-
source at https://github.com/KTH-RPL/dufomap. The main
contributions of our work:
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Fig. 1: The mapping pipeline integrates all point clouds into
a global map, which initially contains numerous dynamic
points. The unprocessed map is shown in the upper right.
After processing with DUFOMap, the algorithm effectively
detects and removes dynamic points, resulting in a clean and
refined map suitable for downstream tasks.

(a) (b)

Fig. 2: Example of point cloud integration. (a) Ray casting
is performed for each point from the sensor position, the
triangle to the left. All cells intersecting a ray are marked as
intersected (purple), and the cells where a point falls within
are marked as hit (gray). (b) Cells that are intersected and
surrounded exclusively by other intersected or hit cells are
classified as void regions (red).

• We propose a method for detecting dynamics by finding
parts of space that has been observed as free taking into
account sensor noise and localization errors.

• Our method achieves state-of-the-art performance in
both offline and online scenarios across different sce-
narios and sensors.

• We demonstrate that our method generalizes in experi-
ments on datasets with five different sensors using the
same setting for the method’s three parameters.

II. METHOD

The proposed method, DUFOMap discretizes the world
into voxels, each containing a flag ivoid indicating whether it
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TABLE I: Quantitative comparison of dynamic points removal in point cloud maps [5]. The best results are shown in bold
and the second best results are shown in underlined. Results are in percentage.

KITTI small town (00) KITTI highway (01) Argoverse 2 big city Semi-indoor
Methods SA ↑ DA ↑ AA ↑ SA ↑ DA ↑ AA ↑ SA ↑ DA ↑ AA ↑ SA ↑ DA ↑ AA ↑
Removert [6] 99.44 41.53 64.26 97.81 39.56 62.20 98.97 31.16 55.53 99.96 12.15 34.85
ERASOR [7] 66.70 98.54 81.07 98.12 90.94 94.46 77.51 99.18 87.68 94.90 66.26 79.30
OctoMap [8] 68.05 99.69 82.37 55.55 99.59 74.38 69.04 97.50 82.04 88.97 82.18 85.51
Dynablox [9] 96.76 90.68 93.67 96.33 68.01 80.94 96.08 92.87 94.46 98.81 36.49 60.05
DUFOMap (Ours) 97.96 98.72 98.34 98.09 94.20 96.12 96.67 88.90 92.70 99.64 83.00 90.94

× × × × ×

× × × × × ×

× × × × × ×

× × ×

× × × × × × × ×

× × × × × × × × × ×

× × × × ×

× × ×
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Fig. 3: Example of integration with larger localization errors.
(a) Point cloud with the real sensor position (green) offset
one cell up compared to Fig. 2(a), showing that some cells
are now incorrectly classified (x). (b) We account for a
localization error of up to two voxels in any direction. This
leads to a more conservative classification of void regions
compared to Fig. 2(b). (c) Extending the hits away from the
sensor to allow classification of void regions next to obstacles
(shown in (d)).

has been observed as empty. The key insight is that points
observed in previously empty regions must be dynamic.

The DUFOMap inputs pairs of sensor poses and clouds
and then continuously updates the void region.

1) Ray-casting from sensor positions to points in the scan.
2) Classifying voxels as hit, intersected, or unknown.
3) Identifying void voxels by confirming all 26 surround-

ing voxels (or 8 in 2D) are also intersected or hit.

In the real world, sensor noise and localization errors
become a problem. If the sensor pose is offset from the
true pose, the hits and intersected voxels would also be
offset, and result in the set of classified void voxels being
incorrect (Fig. 3(a)). We propose to look not only at the
direct neighbors of a voxel but also at the surrounding voxels
at a Chebyshev distance of dp away; From Fig. 3(b), it is
observed that it is now impossible to classify voxels next
to hits as void. To deal with this, anything after a hit is
also considered a hit (see Fig. 3(c)). This is implemented
by extending the ray casting by inserting hits from where
the original ray casting ended. The voxels classified as void
after this can be seen in Fig. 3(d). Lastly, we consider the
problem of sensor noise and modeled it by marking voxels

(a) Raw (Unclean) Map (b) Cleaned Map

Fig. 4: DUFOMap dynamic points removal performance in
a complex, two-floor, structure. The color indicates different
heights. For clearer visualization, parts of the walls have been
removed.

at a distance ds ahead of the hit along the ray as hits.
Points are classified as dynamic if they fall into void voxels

ivoid = true), otherwise static. The primary computational
effort lies in classifying void regions, which is performed
once for each new point cloud. Point classification, in con-
trast, requires only a quick map lookup and can be executed
at any time. This approach allows for the efficient detection
of dynamic objects in 3D environments while accounting for
sensor and localization uncertainties.

III. RESULTS

Table I shows that DUFOMap achieves the best per-
formance in KITTI [10] and semi-indoor [5] dataset and
comparable results in Argoverse 2 [11]. Figure 4 shows a
scene from a two-floor building that challenges methods that
make assumptions about the height, the ground level, etc.
DUFOMap is able to effectively remove dynamic points. The
output of our method in survey data is depicted in Fig. 1
(lower right) when applied to the raw data (upper). In
the detection results (lower left), we naively clustered the
points so that different objects stand out. More quantita-
tive results can be found in our project page https://kth-
rpl.github.io/dufomap.
Real-time: We performed a test on a low-power computer
(a NUC with an Intel Core i7-8559U)on the semi-indoor
dataset. Both Dynablox and DUFOMap reduced the range
to 20m. DUFOMap maintained a frequency of 20Hz on the
4-core CPU compared with less than 10Hz in Dynablox.
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