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Abstract— Lifelong localization is crucial for enabling the
autonomy of service robots. In this paper, we present an
overview of our past research on long-term localization and
mapping, exploiting geometric priors such as floor plans and
integrating textual and semantic information. Our approach
was validated on challenging sequences spanning over many
months, and we released open source implementations.

I. INTRODUCTION

Localization has been long-studied in robotics [2], [17],
[20]. Supported by high-resolution sensors, GNSS-denied
robot localization research initially focused on precise, de-
tailed geometric maps [1], [5], [10], [11]. However, humans
do not require highly accurate geometric information to
navigate [9], [19], but instead, extract semantic information
from objects around them. Inspired by how humans navigate,
we can exploit insights from human navigation to improve
long-term localization, which enables robots to navigate
in the same environment over extended periods, spanning
several months or even years. In this work, we summarize
our past contributions to robust long-term localization and
mapping, exploiting long-lasting geometric, textual and se-
mantic cues [21], [22], [23], [24].

Localization research has advanced beyond purely geo-
metric research, and recently many works tackle the task of
semantic localization and mapping [14], [16], [18]. However,
they focus on getting a detailed reconstruction of the current
environment, rather than long-term localization. Human-
occupied environments tend to be dynamic, having both
fast-moving agents and structural and quasi-static changes
such as opening/closing doors and furniture changes. When
localizing with a known map, similar to how humans revisit
places, a critical component is which elements are contained
in the map. Regardless of the localization strategy, a map
containing unstable features may lead to localization failures.
To support long-term localization, map elements must be
selected rather than including all current observations. These
elements can either be inferred with common sense or
learned statistically from observing an environment from a
period of time [21]. Textual cues are another element that can
effectively support long-term localization. Textual informa-
tion such as room numbers can serve as a unique identifier
of places and is often included in floor plans. However,
they are often neglected in mapping approaches. Works on
text-guided localization are also scarce [3], [13]. Thus, we
proposed a framework for integrating textual information in
maps and exploiting it during localization [24].
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Fig. 1: A 2D abstract semantic map enriching a floor plan with
semantic information, used for long term localization. Different box
colors indicate different object classes.

A crucial aspect of long-term localization is the level of ac-
curacy required. In fact, there is a trade-off between accuracy
and robustness, and each task requires a different blend of
the two. For example, for planning and navigating along the
path of hundreds of meters, robustness (i.e., avoiding jumps
in the trajectory) is more important, while high accuracy
is only required in specific end-points (i.e. pickup/delivery
points). When the requirement of exceptional accuracy is
lifted, we can consider less precise maps, such as hand-drawn
maps [6], visitor map and floor plans annotated by end users
with objects [8], [21]. This relaxation of requirements can
even remove the need for mapping, and allow end-users to
independently edit floor-plan based maps.

In our previous works, we advocated for fusing geometric,
semantic, and textual information for long-term localization
in human-oriented environments. In this paper, we provide a
summary of our contributions and insights.

II. APPROACH

Our goal is to globally localize in an indoor environment,
exploiting semantic and textual cues, and prior geometric in-
formation, when available. We utilize semantically-enriched
floor plans that capture long-lasting features, and localize
by integrating semantic and textual information in a Monte
Carlo localization (MCL) framework [4].

A. Abstract Semantic map

We propose the concept of abstract semantic map, a map
representation that captures the most long-lasting structures
of an environment. This map includes a floor plan (or an
occupancy grid map), which is overlaid by layers of semantic
and textual information. Objects with semantic significance
are represented at high-level by their semantic class and 2D
rectangles overlying the occupancy grid. Textual informa-
tion is encoded through the text likelihood maps (Sec. II-
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Fig. 2: (a) The text likelihood maps (b) Particle distribution prior
to text spotting, with multi-modal distribution (c) Particle injection
based on the text likelihood map after a textual cue was detected.

B). The floor plan is segmented into rooms, where each
room contains a list of semantic objects, a room category
representing a higher level of semantic understanding and
a name corresponding to a text sign. While we offer a
mapping approach that can construct a 3D metric-semantic
map from RGB images [23], it is also possible to edit the
abstract semantic map manually, using our GUI application,
MAPhisto1.

To determine which semantic classes hold significance
for the purpose of long-term localization, we estimated how
transient instances of these classes were. As part of our work
[21], we collected data for several months in a dynamic
environment of a university lab, including office rooms,
corridors and a kitchen. Employing an object detection model
on images with known poses, we were able to detect when
objects have been moved, and assign a stability score to a
semantic class based on how often instances of that classes
moved around.

B. Text Likelihood Maps

Textual information is integrated into our semantic maps
through likelihood functions, describing where the robot
might be when detecting a specific textual cue. In our
work [24], we adopt a text spotting pipeline based on the
work of Liao et al. [7] and Shi et al. [15], who proposed a
detection and recognition models for text, respectively. We
decide to focus on room numbers as a textual localization
cue, which can be either assigned manually to the abstract
semantic map, or extracted from a floor plan. We record
posed images and apply the text spotting, matching each
detection to our list of rooms. For each room number, we
construct a 2D histogram of locations where the text was
successfully detected. These sampled locations provide a
sparse representation of the likelihood of detecting a specific
textual tag, which we refer to as text likelihood maps (Fig. 2).

1https://github.com/FullMetalNicky/Maphisto

We create a continuous, dense representation to approximate
the likelihood with a uniform distribution within an axis-
aligned bounding box enclosing all sampled locations where
the detection rate is above threshold τ for this textual cue.
When collecting posed images is not possible, one can
manually annotate these bounding boxes.

C. MCL Integration
Our approach extends Monte Carlo localization [4]. We

provide different sensor models for integrating textual and
semantic cues.

When a textual cue is detected, we inject particles into the
corresponding area of the map (Fig. 2), based on the text like-
lihood maps. This technique also allows delocalized robots to
get new hypotheses based on the detection, enriching their
particle filters with the proposed poses, and is sometimes
referred to in literature as reciprocal sampling [12].

For 2D object detection predictions, we propose a sensor
model based on cosine distance between the detected heading
and the semantically-annotated map [21]. We also provided
a sensor model for 3D bounding box prediction [23], which
considers the IoU between a 3D bounding box prediction
and the metric-semantic, accounting for the typical detection
noise for that specific semantic class. We use the detected
semantic objects to infer the room category and utilize this
hierarchical semantic information to initialize the particles in
the filter in the corresponding rooms.

III. EXPERIMENTAL EVALUATION

In the course of our research, we performed various ex-
periments on datasets recorded for several months, capturing
different scenarios such as dynamic obstacles, opening and
closing of doors and rearranging furniture.

The outcome of the semantic stability analysis [21],
suggested that it is not necessary to carry this analysis
for each type of environment, as the classes that were
singled out through rigorous data collection and statistical
analysis perfectly matched what we expected to see by using
common sense. Additionally, throughout our research, we
discovered that the classes chosen for one instance of a
specific environment (i.e. ”office”) transferred successfully
to other instances. We used the same classes for deployments
in ETH Zurich and ABB facility in Sweden, as well as our
later work on semantic localization on resource-constrained
platforms [22], where we ported our human-inspired local-
ization to an ultra-low-power compute platform with 1.5 MB
of memory.

In our localization experiments, the semantically-guided
localization outperformed the purely-geometric MCL on all
sequences. Despite the imprecise, hand-annotated maps, we
were able to robustly localize long-term, even when objects
differed from their actual size by 62.5%, or up to 1.25 m.
Similarly, integrating textual cues proved to improve local-
ization stability when localizing in environments with high
geometric symmetry and lack of semantic features. Further
details on the experiments, qualitative and quantitative re-
sults, ablation studies, and insights can be found in the main
papers [21], [22], [23], [24].
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