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Abstract—This paper presents a novel approach integrating
vision foundation models with reinforcement learning to en-
hance object interaction capabilities in simulated environments.
We combine the Segment Anything Model (SAM) and YOLOvV5S
with a Proximal Policy Optimization (PPO) agent operating
in the AI2-THOR simulation environment. Our experiments,
conducted across four indoor Kkitchen settings, demonstrate
significant improvements in object interaction and navigation
efficiency compared to a baseline agent without advanced
perception. The results show a 68% increase in average reward,
a 52.5% improvement in object interaction success, and a 33%
increase in navigation efficiency, highlighting the potential of
combining foundation models with reinforcement learning for
complex robotic tasks.

Index Terms—Reinforcement Learning, Object Interaction,
Vision Foundation Models, Segment Anything Model, AI2-
THOR Simulation

1. INTRODUCTION

Autonomous robots require sophisticated perception and
decision-making capabilities to operate effectively in complex
environments. Advanced perception allows robots to interpret
their surroundings, recognize objects, and understand spatial
relationships [1], [2]. Reinforcement learning (RL) offers
a framework for training agents to learn optimal policies
through interactions with the environment [3].

However, integrating advanced perception models with RL
agents presents challenges, including computational com-
plexity and the need for efficient real-time processing. In
this work, we propose an approach that combines vision
foundation models with reinforcement learning to enhance
object interaction in simulated environments. Specifically,
we integrate the Segment Anything Model (SAM) [4] and
YOLOVS [5] into the perception pipeline of an RL agent
operating within the AI2-THOR simulation environment [6].

Our contributions include: (1) developing an RL agent
that integrates SAM and YOLOVS for improved perception
and object interaction, (2) addressing challenges in designing
an effective reward function, (3) demonstrating significant
performance improvements over a baseline agent, and (4)
providing insights into the integration process of foundation
models with RL for robotic applications.

II. METHODOLOGY

A. Environment and RL Framework

We use the AI2-THOR simulation environment [6], focus-
ing on four indoor kitchen scenes (FloorPlanl, FloorPlan2,
FloorPlan3, and FloorPlan4). The agent operates with a
discrete action space comprising navigation and interaction
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actions, including moving forward, rotating left and right,
looking up and down, picking up objects, and dropping
them. The observation space consists of RGB image frames
captured from the agent’s point of view.

We employ the Proximal Policy Optimization (PPO) al-
gorithm for training due to its stability and efficiency in
high-dimensional action spaces. The design of the reward
function is critical; we aim to encourage exploration, object
interaction, and goal-oriented behaviors. The reward at time
t is defined as:

rr=a-Ady +B-s: —y-cy, (1)

where Ad; is the change in distance to the target object, s;
is a success indicator for interactions, c; is a penalty term, and
a, B, y are weighting factors.

Figure 1 shows top-down views of the four kitchen en-
vironments (FloorPlan1-4) used in our experiments. These
diverse layouts provide a range of object configurations and
spatial relationships for the agent to learn from, enhancing the
robustness of our approach.

B. Perception Pipeline

We integrate SAM for scene segmentation and YOLOVS for
object detection. SAM generates accurate masks for objects
in an image without task-specific training, providing the agent
with detailed information about object boundaries and spatial
relationships. YOLOVS provides bounding boxes and class
labels for objects in real-time, chosen for its stability and lower
computational requirements.

The outputs from SAM and YOLOvVS are combined to
create arich representation of the environment. Specifically, we
overlay the segmentation masks from SAM onto the detected
bounding boxes from YOLOVS5 to refine object localization.
This information is processed and encoded into a feature
representation fed into the agent’s policy network, allowing
it to make informed decisions based on the perceived scene.

C. Training and Evaluation

The agent is trained for 440,000 timesteps across the four
environments. To manage computational demands, we employ
techniques such as asynchronous data loading and GPU ac-
celeration. We use checkpointing and evaluation mechanisms
to monitor the agent’s progress and save models periodically,
enabling resumption of training and analysis of intermediate
results.

To evaluate the effectiveness of our approach, we compare
the performance of the agent with the advanced perception
pipeline against a baseline agent that uses standard RGB
observations without the integration of SAM and YOLOVS.
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Fig. 1: Top-down views of the four kitchen environments in AI2-THOR used in our experiments [6].

Both agents are trained under the same conditions, and their
performance is assessed based on success rates in object
interaction tasks and cumulative rewards.

III. ResuLts AND DiscussioN

Our results demonstrate significant improvements in the
perception-enhanced agent’s performance. Table I presents the
quantitative results:

TABLE I: Performance Comparison

Metric Perception-Enhanced Baseline
Avg. Reward 136.41 + 70.56 81.15 + 80.37
Obj. Interaction Success 73.5% 48.2%
Navigation Efficiency 82.1% 61.7%

The perception-enhanced agent shows a 68% higher average
reward, a 52.5% improvement in object interaction success
rate, and a 33% increase in navigation efficiency. Qualitatively,
we observed several key differences:

1) Object Recognition: The perception-enhanced agent
demonstrated superior ability in identifying and dis-
tinguishing between various kitchen objects, even in
cluttered scenes.

2) Spatial Awareness: Leveraging the detailed segmenta-
tion from SAM, the perception-enhanced agent showed
improved understanding of spatial relationships between
objects, leading to more efficient navigation.

3) Task Planning: The enhanced perception allowed the
agent to make more informed decisions about which
objects to interact with and in what order, resulting in
more coherent and goal-directed behavior.

4) Adaptability: When faced with novel object arrange-
ments across the four different kitchen environments, the
perception-enhanced agent adapted more quickly, lever-
aging its improved scene understanding to generalize its
learned behaviors.

5) Efficient Path Planning: The perception-enhanced agent
demonstrated more efficient path planning and naviga-

tion, often taking shorter routes to target objects and
avoiding obstacles more effectively.

While the integration of vision foundation models signif-
icantly improves performance, it introduces computational
overhead. The perception-enhanced agent requires more GPU
memory and has longer inference times, presenting a trade-off
between performance and computational cost.

The enhanced perception allows the agent to better un-
derstand the environment, leading to more efficient decision-
making and demonstrating the value of integrating advanced
perception models in reinforcement learning for robotic tasks.

However, challenges remain in computational efficiency and
reward function design. The training time for the perception-
enhanced agent was longer than for the baseline agent, which
may limit deployment in resource-constrained environments or
real-time applications with strict latency requirements.

Fine-tuning the reward function proved critical; our iterative
approach, balancing immediate rewards for successful interac-
tions with longer-term rewards for task completion, was crucial
in achieving the reported performance gains.

The integration of SAM and YOLOVS provided comple-
mentary benefits. While YOLOvS offered efficient object
detection and classification, SAM’s detailed segmentation
masks enabled finer-grained spatial reasoning. This combi-
nation allowed the agent to not only identify objects but also
understand their shape, boundaries, and spatial relationships
more accurately across the various kitchen layouts.

IV. ConNcLusioN AND FUTURE WORK

We presented an approach integrating vision foundation
models with reinforcement learning, demonstrating signifi-
cant performance improvements in object interaction tasks.
Future work will focus on efficient integration techniques,
transfer learning to real-world scenarios, multi-task learning,
performance in dynamic environments, and incorporating
human-robot interaction. Despite challenges in computational
efficiency, our work highlights a promising direction for
developing more capable and adaptable robotic systems.
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