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Abstract— Autonomous agents require the capability to iden-
tify dynamic objects in their environment for safe planning and
navigation. Incomplete and erroneous dynamic detections jeop-
ardize the agent’s ability to accomplish its task. Dynamic detec-
tion is a challenging problem due to the numerous sources of un-
certainty inherent in the problem’s inputs and the wide variety
of applications, which often lead to use-case-tailored solutions.
We propose a robust learning-free approach to segment moving
objects in point cloud data. The foundation of the approach lies
in modelling each voxel using a hidden Markov model (HMM),
and probabilistically integrating beliefs into a map using an
HMM filter. The proposed approach is tested on benchmark
datasets and consistently performs better than or as well as
state-of-the-art methods with strong generalized performance
across sensor characteristics and environments. The approach
is open-sourced at https://github.com/vb44/HMM-MOS.

I. INTRODUCTION
Detecting motion in the workspace is a crucial capability

for autonomous agents. Agents employ sensors such as
cameras and Light Detection and Ranging (LiDAR) to image
their environment. The Moving Object Segmentation (MOS)
problem involves categorizing the pixels in an image or the
points in a LiDAR scan as static or dynamic. A key challenge
is to provide consistent detection across environments, plat-
form dynamics, and sensor characteristics. There is a need
for a solution that offers generalized and accurate dynamic
detection. To address this, we propose a learning-free MOS
approach demonstrating strong generalized performance.

II. RELATED WORK
Learning-free approaches to solving the MOS problem are

generally categorized as scan-based or map-based.
Scan-based methods compare successive observations to

highlight discrepancies in the environment. Underwood et
al. [1] detect changes in scans by identifying discrepancies
in the observed space, with points labelled dynamic if they
are greater than a distance from previously registered points.
Yoon et al. [2] use a similar idea with dynamic detection re-
lying on a window size that allows sufficient displacement of
the object - a characteristic differing between object classes.
Mersch et al. [3] demonstrate state-of-the-art performance
with 4DMOS using sparse 4D spatio-temporal convolutions
for segmenting dynamic points in scan-to-scan comparisons.

Map-based methods construct a representation of the en-
vironment and query changes in occupancy. Octomap by
Armin et al. [4] clamp the occupancy probabilities to evolve
beliefs in dynamic environments. Methods using similar for-
getting policies described by Yguel et al. [5] cannot adapt to
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Fig. 1: HMM-MOS accurately detects moving objects using the
same configuration in all scenarios, including (a) a shopping centre,
(b) a person jumping over a moving ball, (c) a pedestrian walking
alongside a car, and (d) multiple cars on a highway.

different object classes without compromising the mapping
quality and introducing false positives. Dynablox by Schmid
et al. [6] integrates temporal properties in a Truncated Signed
Distance Field map, demonstrating generalized performance
across diverse dynamic objects. Mersch et al. [7] extend
4DMOS with a volumetric approach to retain a memory of
spaces that can be occupied by moving objects, increasing
the detection rate.

III. PROPOSED APPROACH

The general HMM framework applied to identify dynamic
objects in point cloud data is adapted from [8]. This section
provides a brief overview of the three stages of the algorithm.

1) Voxel Representation: A map frame, M, is defined
to indicate the environment’s origin. At time k, the map,
MM,k, is discretized using voxels, v, of a user-configured
size ∆. The voxels are augmented with temporal attributes.
Without uncertainty, detecting dynamic objects is as simple
as updating voxel occupancy with new observations, with
occupancy changes suggesting dynamic objects. As the state
of each voxel is not directly interpretable due to the associ-
ated uncertainty, an HMM is used to represent each voxel’s
occupancy, similar to [9], [10]. Using the notation from [11],
each voxel is represented using an HMM with three states
(n = 3), S = {unobserved, occupied, free}. Let the i-th
voxel’s state vector, x̂i,k ∈ Rn×1, denote the probability of
being in each state at time k, with the initial state is given
by x̂i,0 = [1, 0, 0]T. The state transition matrix, A ∈ Rn×n,
has large self-transition probabilities for each state, based on
the belief that a voxel requires sufficient confidence before
transitioning. The likelihood of the i-th voxel being in each
state at time k given the sensor observation is encoded in
the measurement conditional densities, Bi,k ∈ Rn×n. Once
defined, a voxel’s state is efficiently updated using the recur-



sive HMM filter [12], x̂i,k = ηi,kBi,kAx̂i,k−1, where ηi,k
is a normalization that ensures x̂i,k is a probability. Voxels
outside the sensor’s maximum range and those unobserved
in the global window, wg , are removed from the map.

2) Map Update: A point cloud at time k in the sensor
frame, PS,k, is transformed by the current sensor pose
estimate, T̂M→S,k, to locate the scan points in the map
frame, PM,k. The scan in map frame, PM,k, is discretized at
a voxel resolution of ∆, to form a voxelized scan, P

′

M,k. A
raycast is performed using [13] to find all observed voxels.
All observed voxels are saved in P

′obs
M,k.

The measurement conditional densities of the i-th voxel
being in a particular state given an observation is, Bi,k =
diag(0,Lo

vi , 1 − Lo
vi), where Lo

vi , is the likelihood of the
voxel being occupied. An observed voxel is likely to be
occupied if it is close to a voxel in the voxelized scan,
P

′

M,k, and free otherwise. This is captured using the scan’s
Euclidean Distance Field [14]. The EDF value for the i-
th observed voxel, di, is used to calculate the occupancy
likelihood by evaluating an unnormalized Gaussian at di,
Lo
vi = exp (−d2i /2σ

2
o), where σo is a user-configured stan-

dard deviation to capture uncertainty in the estimate. A
voxel’s state is updated when the state’s probability surpasses
a predefined threshold, pmin.

3) Dynamic Point Identification: A voxel’s occupancy
transition seeds the detection of dynamic objects. The first
step is to identify voxels from the current voxelized scan,
P

′

M,k, that changed state in the voxel map, MM,k, captured
in P

′chg
M,k . The change detection allows for likely dynamic

voxels to be identified, however, changes in the voxel’s
neighbourhood are not examined. A spatiotemproal (4D)
convolution is performed to identify missed detections and
suppress noisy detections. For each voxel, vi ∈ P

′

M,k, the
likelihood of being dynamic, Ldyn

vi , is calculated by summing
state changes in the voxel’s local neighbourhood over a local
window size of wl. A kernel, Km ∈ Rm×m×m, is convolved
with each voxel in P

′

M,(k−wl)→k to compute Ldyn
vi

.
A voxel’s dynamic likelihood depends on the voxel size,

the convolution kernel, the scan sparsity, and the object.
Hence, manually thresholding to extract dynamic voxels
based on their likelihood is challenging. Otsu’s automatic
thresholding [15] is applied to the convolution scores to
extract the set of dynamic voxels, P

′dyn
M,k . High-confidence

dynamic voxels from the previous scan are preserved in the
current scan and saved in a temporal dynamic occupancy map
of size wd scans to assist with future detections. A nearest
neighbour dilation is applied to P

′dyn
M,k to grow the dynamic

detection results into neighbouring regions.

IV. RESULTS
We evaluate the proposed algorithm using the

DOALS [16], Sipailou Campus [17], and HeLiMOS [18]
benchmark datasets to test generalized performance. All
tests use the same configuration with an uncertainty equal to
the voxel size, σo = ∆, pmin = 0.99, a convolution kernel
size of m = 5, otsumin = 3, and scan windows of wl = 3,
wd = 100, and wg = 300 to demonstrate generalized

behaviour. The full testing conditions, sensor poses, sample
videos, and all results are linked on our open-source page.
All tests estimate sensor pose using [19], unless stated
otherwise.

The results displayed in Tables I-III demonstrate the
strong generalization capabilities of the proposed algorithm
in comparison to state-of-the-art methods. The DOALS
dataset is recorded with a handheld OS1-64 in environments
with diverse dynamic objects predominantly consisting of
pedestrians, the Sipailou Campus dataset is recorded using
a Livox Avia mounted to an unmanned ground vehicle as it
traverses a university campus, whereas the new HeLiMOS
dataset is recorded with four different LiDARs mounted to
a vehicle in dynamic urban environments. We demonstrate
consistent performance, on par with or performing better
than state-of-the-art such as Dynablox [6], 4DMOS [3]
and MapMOS [7]. To evaluate generalized performance, we
compare the HeLiMOS benchmark results with the methods
trained on the SemanticKitti dataset. When the benchmark
approaches are trained on the new data, they outperform the
proposed approach, see [18]. The algorithm’s performance
metrics are hindered by the ground truth labelling process as
we detect movement only, and not if the object has moved
throughout the scan sequence. This severely decreases the
recall. The proposed algorithm is computationally expensive
and only provides real-time results within a 20-50m range
depending on the point cloud density. There is ongoing work
to achieve real-time results for larger detection ranges.
TABLE I: Evaluation on the DOALS dataset with best results in
bold. Results for other methods are as documented by [6].

Method ST SV HG ND
4DMOS [3] 38.8 50.6 71.1 40.2
LMNet [20] (Refit) 19.9 18.9 27.4 40.1
Dynablox [6] 86.2 83.2 84.1 81.6
This paper (online), ∆ = 0.20m 82.7 80.8 85.9 81.4
LC Free Space [21] (20 m) 48.7 31.9 24.7 17.7
Dynablox [6] (20 m) 87.3 87.8 86.0 83.1
This paper (online), ∆ = 0.20m (20 m) 88.9 84.7 87.3 83.5

TABLE II: Evaluation on the Sipailou Campus dataset with best
results in bold. Results for other methods are as reported by [17].

Method IoU Validation IoU Test
MotionSeg3D [22] 6.83 6.72
4DMOS [3] 78.54 82.30
Motion-BEV-h [17] 70.94 71.51
This paper (online), ∆ = 0.25m 85.60 87.00

TABLE III: Evaluation on the HeLiMOS dataset with best results
in bold. Results for other methods are as documented by [18].

Method L A O V Avg
4DMOS, online [3] 52.1 54.0 64.2 4.7 43.7
4DMOS, delayed [3] 59.0 58.3 70.4 5.4 48.3
MapMOS, Scan [7] 58.9 63.2 81.4 4.3 52.0
MapMOS, Volume [7] 62.7 66.6 82.9 5.8 54.5
This paper (online), ∆ = 0.25m 51.3 69.8 75.0 35.0 57.8
This paper, delayed, ∆ = 0.25m 57.6 70.0 73.4 53.9 63.7

V. CONCLUSIONS
This paper presents a learning-free solution to the MOS

problem. The significance of the work is that it is robust and
generalizes to a range of datasets without reconfiguration,
producing comparable or better results than state-of-the-art.
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