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Abstract—Global localization is essential for long-term, drift-
free robot navigation, but existing methods struggle with varying
viewpoints or lighting. ROMAN (Robust Object Map Alignment
Anywhere) addresses this challenge by using open-set object maps
for global localization, offering a more reliable representation
than visual features. These sparse maps are built via open-
set segmentation, allowing localization in novel environments.
ROMAN aligns small object submaps using a graph-theoretic
global data association approach, incorporating gravity direction,
open-set semantics, and shape similarity for robust global data
association. Tested on large-scale outdoor datasets, ROMAN
outperforms other methods, with 36% higher recall and 40%
lower trajectory error in challenging multi-robot SLAM tasks.
More details are at https://acl.mit.edu/ROMAN/.

I. INTRODUCTION

Global localization [1] refers to the task of positioning a
robot within a reference map created either in a previous
mapping session or by another robot in real-time [2], and
is a crucial capability for drift-free navigation. This work
focuses on global localization and loop closure using object-
or segment-level representations, which recent studies [3–5]
show to be effective in environments with significant sensor
noise and viewpoint changes.

The core challenge is global data association, which in-
volves finding correspondences between observed and mapped
objects without an initial guess. Earlier approaches such as
[6–9] rely on geometric verification based on RANSAC [10],
which exhibits high computational complexity under high
outlier regimes. Newer graph-theoretic approaches offer better
accuracy and robustness by forming consistency graphs to
solve the correspondence problem [3, 11–14]. However, these
methods struggle in challenging regimes such as environments
where objects have ambiguous spatial configurations.

To address this, we propose extending graph-theoretic data
association beyond mutual geometric consistency by incorpo-
rating (i) open-set semantics extracted as semantically mean-
ingful 3D segments [15, 16] with descriptors obtained from
[17]; (ii) segment-level geometric attributes like volume and
shape; and (iii) prior knowledge of gravity direction from
inertial sensors. This unified approach improves the state-of-
the-art [11] in terms of both precision and recall metrics.

II. ROMAN

ROMAN, overviewed in Fig. 1, constructs segment-level
maps using high-level features from RGB-D images and robot
pose estimates to enable global localization in unseen envi-
ronments. Using Kimera-VIO for odometry [18], FastSAM
[16] for image segmentation and averaged CLIP embeddings
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Fig. 1: ROMAN includes three modules including mapping, data
association and pose graph optimization. The front end mapping
pipeline tracks segments across RGB-D images to generate segment
maps. The data association module incorporates semantics, geometry
and PCA from submaps along with gravity as a prior into the RO-
MAN alignment module to return relative transformations between
submaps. These transformations are used along with VIO for pose
graph optimization.

[17] for semantic descriptors, the system processes and tracks
3D object segments, filtering undesirable objects and merging
segments with high voxel overlap [19].

To perform global localization, we divide each robot’s seg-
ment map into overlapping submaps and solve a registration
problem to align submaps from different robots by associating
3D segments using geometric and semantic attributes. The
process involves detecting map overlap and matching segments
despite uncertainty and outliers, with the final transformation
between frames estimated using Arun’s method [20].

We incorporate segment-based loop closures into the ro-
bust multi-robot pose graph solver from [21] by registering
submaps between robots and within each robot over time,
rejecting loop closures with insufficient correspondences, and
feeding the valid ones into the robust pose graph optimization
of [21] to estimate multi-robot trajectories.

Preliminaries: Robust Data Association Finding object
associations between submaps leverages prior work from
CILPPER [11]. CLIPPER first constructs a consistency graph,
G, where each node in the graph is a putative association
ap = (pi, pj) between segments pi and pj from robots i
and j respectively. From the consistency graph G, a weighted
affinity matrix M is created where Mp,q = sa(ap, aq) and
Mp,p = 1, and sa(ap, aq) ∈ [0, 1] scores the geometric
consistency (i.e., whether ∥pi − qi∥ is similar to ∥pj − qj∥)
between two associations. Inlier associations are determined
by (approximately) solving for the densest subset of consistent
associations, by maximizing the Rayleigh Quotient of M and
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the binary u association vector, where up is 1 when association
ap is accepted as an inlier and 0 otherwise. See [11] for more
details.

Incorporating additional information into association
affinity. In its original form, the affinity matrix M relies
solely on distance information between pairs of centroids. We
propose a method that directly incorporates shape information
via PCA and semantic information as well as the direction of
gravity (when available) in the underlying densest subgraph
optimization problem using the geometric mean,

Mp,q = GM(sa(ap, aq), so(ap), so(aq)), (1)

where so is object similarity in terms of shape and semantics
and sa is our novel association pair scoring using gravity as
a prior. so(ap) = GM(sosemantic , soshape), where we emphasize
that this scoring is between pairs of objects pi and pj rather
than pairs of associations. We make sosemantic a scaled cosine
similarity between CLIP embeddings and soshape the geometric
mean of the ratio between four indicators of the two objects’
shape: volume, linearity, planarity, and 3D-ness, where the
last three are computed using principal component analysis.
We incorporate prior knowledge from gravity by decoupling
the vertical and lateral components of object distances for
computing association pair similarity in sa.

III. EXPERIMENTS

We evaluated ROMAN’s map alignment using the outdoor
Kimera-Multi Dataset [22], where each robot creates submaps
using Kimera-VIO [18] for odometry. Baselines include
RANSAC-100K and RANSAC-1M, on segment centroids with
max iteration count of 100,000 and 1 million resepectively,
standard CLIPPER, CLIPPER with pruned initial associations,
and visual features with VoW descriptors of ORB features.

Results in Fig. 2 including precision-recall, distance error,
and heading difference plots, demonstrate ROMAN’s ability to
correctly align maps while rejecting incorrect ones, even under
challenging viewpoint scenarios. ROMAN achieved higher
precision/recall, aligned maps with less error, and handled
diverse heading angles better than baseline methods, with a
maximum recall of 0.67 for same-direction submaps and 0.26
for opposite-direction submaps, outperforming the next best
method, RANSAC-1M. ROMAN is also 4.5 times faster than
RANSAC-1M, with each submap packet under 250 KB and
requiring less than 24 MB for a 1 km trajectory.
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Fig. 2: Performance of ROMAN and baseline methods.

We run the full ROMAN pose graph optimization pipeline
on the tunnel, hybrid, and outdoor Kimera-Multi datasets and
compare the root-mean squared (RMS) absolute trajectory
error (ATE) of the estimated multi-robot trajectories.

ROMAN’s ability to get loop closures in challenging visual
scenarios allows moderate improvements to the ATE; however,
due to robot experiment design, the robot paths are well
connected and most loop closure opportunities occur when
robots are traveling in the same direction, leading to only
opportunity for small improvement.

TABLE I: Multi-robot SLAM Results - ATE RMSE (m)

Dataset Visual Features ROMAN Combined
Tunnel 4.38 4.20 4.12
Hybrid 5.83 5.12 4.77
Outdoor 9.38 8.77 7.77

We further evaluate the proposed method’s ability to register
segment maps in an outdoor, off-road environment with high
visual ambiguity.

In this experiment, data is recorded on Clearpath Jackals
using Intel RealSense D455 to capture RGB-D images and
Kimera-VIO [18] for odometry. We run the ROMAN-SLAM
pipeline on easy (same direction), medium (partial opposite di-
rections) and hard (opposite direction) pairs of robot trajectory
data taken in an outdoor, off-road environment. We compare
ROMAN to Kimera-Multi [21] using visual features for loop
closure in Fig. 3, where ROMAN finds loop closures in cases
that Kimera-Multi does not.

Fig. 3: Off-road qualitative pose graph trajectory estimate. Blue lines
( ) represent single-robot loop closures and green lines ( ) show
multi-robot loop closures.

IV. CONCLUSION

This work presented a method for performing global local-
ization in challenging outdoor environments by robust registra-
tion of 3D open-set segment maps. Associations between maps
were informed by geometry of 3D segment locations, segment
shape attributes, and direction of the gravity vector in segment
maps. Future work includes incorporating additional shape
information from learned shape descriptors for computing
shape similarity.
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