Massachusetts ROMAN: Robust Object **Institute of** echnoloav **IROS '24** Map Alignment Anywhere ABU DHABI **Aerospace Controls Lab**

Mason Peterson, Yi Xuan Jia, Yulun Tian, Annika Thomas, Jonathan P. How

Motivation

Goal: view invariant and communication efficient global localization by aligning object maps

Challenge: Object locations alone can lead to ambiguous and incorrect map registration

Background

Point registration using robust graph-theoretic data association

- Geometric aliasing \rightarrow wrong object associations
- Incorrect rotation in yaw (~180 degrees)
- Large roll/pitch angle

Alignment using only object centroids

s.t. $u_p u_q = 0$

if $\mathbf{M}_{p,q} = 0, \ \forall_{p,q}$

- Association vector. **u**
- Affinity matrix, M: association consistencies (pairwise) distance similarity)

Approach

Incorporate gravity, semantic and shape information in the affinity matrix, M:

 $\mathbf{M}_{p,q} = \mathbf{GM}(s_a(a_p, a_q), s_o(a_p), s_o(a_q))$

Using gravity direction and object shape and semantic information to guide object association improves map alignment

 $s_o(a_p) = \mathrm{GM}(s_{o_{\mathrm{semantic}}}, s_{o_{\mathrm{shape}}})$

Gravity-guided pairwise score:

 $s_a(a_p, a_q)$

associations are inconsistent (z-axes are misaligned)

Global Localization Results

On MIT's campus, ROMAN achieves higher precision and recall than baselines, aligns maps with less error, and has greater alignment success in challenging opposite-view alignment cases

> **—** CLIPPER + Prune ROMAN RANSAC-1M RANSAC-100K — CLIPPER

SLAM Results

In an outdoor Easy off-road ROMAN environment 50m with high visual ambiguity, ROMAN õ SUM detects more loop closures 0m than Kimera-Multi using visual features

Offroad Unstructured Environment

Medium Hard

Dataset	Visual Features	ROMAN	Combined
Tunnel	4.38	4.20	4.12
Hybrid	5.83	5.12	4.77
Outdoor	9.38	8.77	7.77

Kimera Multi Dataset

This work is supported in part by the Ford Motor Company, ONR, and ARL DCIST under Cooperative Agreement Number W911NF-17-2-0181 [1] P. C. Lusk and J. P. How, "CLIPPER: robust data association without an initial guess," IEEE RA-L, 2024. [2] Y. Tian et al., "Resilient and distributed multi-robot visual SLAM: Datasets, experiments, and lessons learned," in IEEE/RSJ IROS, 2023.

