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Abstract— Semantic segmentation models are typically trained
on a fixed set of classes, limiting their applicability in open-
world scenarios. Class-incremental semantic segmentation aims
to update models with emerging new classes while preventing
catastrophic forgetting of previously learned ones. However,
existing methods impose strict rigidity on old classes, reducing
their effectiveness in learning new incremental classes. In this
work, we propose Taxonomy-Oriented Poincaré-regularized
Incremental-Class Segmentation (TOPICS) that learns feature
embeddings in hyperbolic space following explicit taxonomy-tree
structures. Additionally, we maintain implicit class relational
constraints on the geometric basis of the Poincaré ball. This
ensures that the latent space can continuously adapt to new
constraints while maintaining a robust structure to combat
catastrophic forgetting. Extensive evaluations of TOPICS on
the Cityscapes benchmark demonstrate that it achieves state-
of-the-art performance. Additional details are available at
http://topics.cs.uni-freiburg.de.

I. INTRODUCTION

Class-Incremental Learning (CIL) aims to update a model
with new classes at periodic timesteps, balancing learning of
new classes while preserving knowledge of old classes [1].
Class-Incremental Semantic Segmentation (CISS) additionally
incorporates the background shift, as pixels that belong to old
classes are labeled as background in new data samples [2].
State-of-the-art CISS methods restrain the forgetting of old
knowledge with data replay [3], distillation [2], [4], or network
expansion [5], [6]. In this work, we introduce taxonomy-
aware continual semantic segmentation for automated driving
scenarios. Our proposed method TOPICS, depicted in Fig. 1,
enforces features conform to taxonomy-tree structures in
hyperbolic space. To further avoid catastrophic forgetting,
we incorporate pseudo-labeling of the background, and we
introduce two novel regularization losses.

II. TECHNICAL APPROACH
A. Class-Incremental Semantic Segmentation

CISS aims at training a model fy over t = 1,....T
incremental tasks. Every task is defined by its own disjoint
label space C' and training dataset (2t,4*) € D!. The
background class b? includes all pixels whose true semantic
class (y) is not included in C*. We consider the more realistic
overlapped setting of CISS where training images (z!) may
include pixels whose dataset ground truth labels are old,
current, or future classes. After every task ¢, the network is
challenged to make predictions on C'* whereas only true
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background pixels should not be associated with a semantic
class. In contrast to [2]-[4], [8], we do not constrain future
classes to originate only from the background in taxonomic
CISS. We regard incremental scenarios where future classes
are refinements of known classes or the background. In the
former case, we define disjoint subsets D! according to a
fixed ratio, i.e. the same image cannot be observed with
different labeling taxonomies at different time steps.

B. Semantic Segmentation with the Poincaré Model

We model the class hierarchy in hyperbolic space due to
its favorable property of equidistant node connections on
all hierarchy levels. Consequently, distances are inversely
proportional to the semantic similarity of classes. The
hyperbolic space follows the geometry of constant negative
curvature which is defined in the variable c. The Poincaré
model is a stereographic projection of the upper sheet of a
two-sheeted hyperboloid and is represented by a unit ball,
see [10] for more details. The geometric interpretation of
multinomial regression in hyperbolic space suggests that every
class y is represented as a hyperplane in the Poincaré ball
with offset o, € DY and orientation 7, € TDY [11].

C. Hierarchical Segmentation

We model the hierarchy of semantic classes in the last
layer of the network. We opt for a binary cross-entropy
loss to ensure magnitudes of old and new class predictions
do not correlate. Specifically, we extend the state-of-the-art
hierarchical segmentation loss [12] to multi-hierarchy levels.
Therefore, we model leaf nodes and all their ancestors as
separate output classes V and use a combination of ancestor A
and descendant D logits (s) in the loss function. We follow the
tree-min loss (L) proposed in [12]. Further, we separately
employ a categorical cross-entropy (L) on every hierarchy
level. This loss penalizes high prediction scores of sibling
class descendants. The complete hierarchical loss is defined
as Lyjer = aLryr + BLCE.

D. Hierarchical Relation Distillation

We employ an InfoNCE loss on the hyperbolic class
hyperplanes #; to maintain closely grouped classes of the
prior model in a similar constellation in the updated model.
We define a distance between two classes y' and y? as the
distance between one class offset 0,1 and the hyperplane of
the other class H,». Before beginning the training procedure,
we utilize the old model’s weights to compute the top k£ most
similar hyperplanes H,, for every offset o, in C'**~!. Further,

we denote all positive anchors of a class, k;rl , as the top k
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Fig. 1: During base training of TOPICS, features are mapped onto the Poincaré ball before the class hierarchy is explicitly enforced with Lj,;¢,-. In incremental
steps, the old model is used to generate pseudo-labels of old classes and to regularize the last layer’s weights with L,..; and feature radii with £g;s¢.

TABLE I: Continual semantic segmentation results on Cityscapes in mloU (%). Tasks defined as C 1.¢T(T tasks) and h class hierarchy increments.

| 14-1 (6 tasks) |

10-1 (10 tasks) ‘

7-4 (4 tasks)h \ 7-18 (2 tasks)h

Method | 1-14 15-19 all | 1-10 11-19 all | 17 8-25 all | 17 8-25 all

PLOP [4] 63.54 1538 4833 | 60.75 2797 4296 | 88.56 18.14  20.75 88.73 15.06 17.99
MiB [2] 66.37 1436  50.05 61.80 3297 4573 | 77.66 6.61 9.83 90.10 5.71 9.64
MiB + AWT [7] 65.60 19.19  50.72 | 6097 3570  46.55 84.65 10.46 13.64 | 90.19 5.61 9.56
DKD (8] 68.83 1470  51.86 | 66.77 3452 4892 | 89.46 0.56 4.98 89.19 4.29 8.32
MicroSeg [9] 51.35 11.61 38.84 | 4437 2355 3278 | 86.39 1.63 5.79 86.37 7.71 11.26
TOPICS (Ours) | 73.03 4247 6174 | 71.37 52.62 59.36 | 90.02 51.31 50.69 | 90.33 6162 59.98

smallest absolute distances to o,, and enforce these relations
to be maintained during the incremental training. We apply
an InfoNCE-inspired loss:

exp (1 — 7 - di+ /dmaz)
ZZD:O exp (1 —7-d;/dmaz) -
with 7 being the temperature hyper-parameter.

Ly =— log ()

E. Hyperbolic Distance Correlation

As incremental data is unbalanced with new classes
appearing more frequently, we aim to constrain the radii
of features to be unchanged between the old and new models.
Therefore, we enforce features of the new and old model to
be equidistant from the center of the Poincaré ball (Lg;s¢).

III. EXPERIMENTAL EVALUATION
A. Datasets

We evaluate TOPICS on the Cityscapes [13] dataset. The
Cityscapes dataset consists of 19 semantic classes in addition
to a void class. For CISS from the background, we adapt the
14-1 (6 tasks) and 10-1 (10 tasks) setting as proposed in [7].
The first 14 or 10 classes are learned during base training
while one class is added per incremental step. For CISS from
known classes, we learn 7 base classes that correspond to the
official sub-categories defined for Cityscapes and increment
the model in a 7-4 (4 tasks) or 7-18 (2 tasks) manner.

B. Experimental Setup

In line with prior work [2], [4], [9], we use the DeepLabV3
model with the ResNet-101 backbone which is pre-trained
on ImageNet for all the experiments. We employ the Geoopt
library [14] to project the Euclidean features to a Poincaré ball
with ¢ = 2.0. Further, we follow the Mdbius approximation
defined in [11] for more efficient computations. We train
TOPICS for 60 epochs per task with batch size 24 using
the Riemannian SGD optimizer with momentum of 0.9 and

weight decay of 0.0001. We use a poly learning rate scheduler
with initial learning rates of 0.05 for base training and 0.01
in all incremental steps. For the hierarchical loss function,
we set « = 5 and 8 = 1. We train on random non-empty
crops of (512,1024) with horizontal flipping.

C. Quantitative Results

We compare TOPICS with five state-of-the-art CISS
methods: PLOP [4], MiB [2], MiB+AWT [7], DKD [8]
and MicroSeg [9]. For each method, we use the respective
author’s published code and use the same augmentations
outlined in Sec. III-B. We evaluate the models using the
mean intersection-over-union (mloU) metric over all the
base classes (C1) and novel classes (Co.7) separately as an
indication of rigidity and plasticity. We present the results in
Tab. I. TOPICS outperforms all baselines by at least 9.88pp
on the CISS from the background. While the difference in
base IoU measures 4.2pp, our method significantly exceeds
the benchmarks by at least 16.9pp in terms of novel IoU.
Additionally, the baselines are specifically designed for the
CISS from background setting only, and thus significantly
underperform on the CISS from known classes setting. This
highlights the need for solutions tailored to both scenarios.
We highlight the versatility of our method to balance plasticity
and rigidity in all tested CISS settings.

IV. CONCLUSION

We present TOPICS, a novel CISS approach that models
features conforming to taxonomy-tree structures on the
Poincaré ball to balance rigidity and plasticity in incremental
learning. TOPICS further maintains implicit class relations
between old class hyperplanes and constraints features to have
equidistant radii. Our method is one of the early works that
uniformly addresses the bifurcation of previously observed
classes and incremental classes from the background.
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