The coupling of perception and integration For object discovery and understanding

(Dell)

Jen Jen Chung, Francesco Milano

14 October 2024

Why dense object instance-aware scene reconstruction?

Grinvald et al., "Volumetric instance-aware semantic mapping and 3D object discovery", RAL 2019

Exploring interactions in an object-level map

Exploring interactions in an object-level map

Learned affordances from interactive exploration

Wulkop et al., "Learning affordances from interactive exploration using an object-level map", ISRR 2024

Finding and retrieving hidden objects

To grasp or not to grasp?

Active search and grasp in clutter

Pitcher et al., "Reinforcement learning for active search and grasp in clutter", IROS 2024

Object-level representations for robotic interaction

Harmony: Assistive robots for healthcare

Harmony: Assistive robots for healthcare

Harmony: Assistive robots for healthcare

Perception in support of robotic interaction

Desiderata:

Accurate reconstruction (geometry, appearance)

Flexibility: Encode task-specific properties

Ability to easily incorporate new representations

How? Our hypothesis: Neural Fields + Neural Rendering

Perception in support of robotic interaction

One example task: 6-DoF Object Pose Estimation

State-of-the-art approaches rely on textured CAD models and photorealistic synthetic datasets (PBR)

How can neural fields and neural rendering help?

SurfEmb-based correspondence learning

bject model (NeuS2 / mesh) ---- Samp

TL;DR:

- Neural object representation: NeuS2
- Semi-automatic pipeline to train NeuS2 from ~100 few real images
- Novel view synthesis + online augmentation

to generate photorealistic training data

 $PnP+RANSAC \longrightarrow Pose refinement$

Estimated pose

ica Agenciae de las legenseros (1.3)

NeuSurfEmb

OnePose++ (w/o tracking, orig. recrop.)

Gen6D (with tracking) Gen6D (w/o tracking)

NeuSurfEmb

OnePose++ (w/o tracking, orig. recrop.) OnePose++ (w/o tracking, prop. recrop.)

Gen6D (with tracking)

Gen6D (w/o tracking)

NeuSurfEmb

OnePose++ (w/o tracking, orig. recrop.) OnePose++ (w/o tracking, prop. recrop.)

Gen6D (with tracking)

Gen6D (w/o tracking)

The low amount of texture generally causes less accurate predictions for OnePose++

What is the future of object representations for robotics?

- How can we form object representations even more efficiently?
- What type of properties should we additionally incorporate?

. . .

• Is an explicit database needed or will implicit, large-scale priors be the future?

Jen Jen Chung

Robotic Perception, Planning and Learning Lab, UQ jenjen.chung@uq.edu.au

Francesco Milano

Autonomous Systems Lab, ETHZ francesco.milano@mavt.ethz.ch