
The coupling of perception 
and interaction
For object discovery and understanding

Jen Jen Chung, Francesco Milano

14 October 2024



2



Why dense object instance-aware scene reconstruction?
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Grinvald et al., “Volumetric instance-aware semantic mapping and 3D object discovery”, RAL 2019



Exploring interactions in an object-level map
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Exploring interactions in an object-level map
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Learned affordances from interactive exploration
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Wulkop et al., “Learning affordances from interactive exploration using an object-level map”, ISRR 2024
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Finding and retrieving hidden objects



To grasp or not to grasp?
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Viewing options

Grasping options

Action values learned via RL

𝑅 = 𝜔
Δ Possible target locations

Possible target locations
− 𝑡



Active search and grasp in clutter
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Pitcher et al., “Reinforcement learning for active search and grasp in clutter”, IROS 2024

Thursday 9-10AM

Deep Learning IV: Paper ThPI4T5.8



Object-level representations 
for robotic interaction



Harmony: Assistive robots for healthcare
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European Union’s Horizon 2020 research and innovation programme, grant agreement No. 101017008 - https://harmony-eu.org/



Harmony: Assistive robots for healthcare
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European Union’s Horizon 2020 research and innovation programme, grant agreement No. 101017008 - https://harmony-eu.org/



Harmony: Assistive robots for healthcare
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European Union’s Horizon 2020 research and innovation programme, grant agreement No. 101017008 - https://harmony-eu.org/



Perception in support of robotic interaction
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Desiderata:

Accurate reconstruction (geometry, appearance) Flexibility: Encode task-specific properties

Ability to easily incorporate new representations

How? Our hypothesis: Neural Fields + Neural Rendering



Perception in support of robotic interaction
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One example task: 6-DoF Object Pose Estimation

State-of-the-art approaches rely on textured CAD models and photorealistic synthetic datasets (PBR)

How can neural fields and neural rendering help?



Neural fields for object pose estimation – NeuSurfEmb
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Milano et al., “NeuSurfEmb: A Complete Pipeline for Dense Correspondence-based 6D Object Pose Estimation without CAD Models”, IROS 2024



Neural fields for object pose estimation – NeuSurfEmb
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Milano et al., “NeuSurfEmb: A Complete Pipeline for Dense Correspondence-based 6D Object Pose Estimation without CAD Models”, IROS 2024

TL;DR:

• Neural object representation: NeuS2

• Semi-automatic pipeline to train NeuS2 from 

~100 few real images

• Novel view synthesis + online augmentation 

to generate photorealistic training data

• A feature field is contrastively trained with a 

CNN to learn 2D-3D correspondences 

(SurfEmb)

• Correspondence-based pose estimation



Neural fields for object pose estimation – NeuSurfEmb

18
Milano et al., “NeuSurfEmb: A Complete Pipeline for Dense Correspondence-based 6D Object Pose Estimation without CAD Models”, IROS 2024

TL;DR:

• Neural object representation: NeuS2

• Semi-automatic pipeline to train NeuS2 from 

~100 few real images

• Novel view synthesis + online augmentation 

to generate photorealistic training data

• A feature field is contrastively trained with a 

CNN to learn 2D-3D correspondences 

(SurfEmb)

• Correspondence-based pose estimation



Neural fields for object pose estimation – NeuSurfEmb
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• How can we form object representations even more efficiently?

• What type of properties should we additionally incorporate?

• Is an explicit database needed or will implicit, large-scale priors be the future?

• …

What is the future of object representations for robotics?
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