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Abstract—Existing proposals cannot leverage keypoint
heatmaps with segmentation masks, calling for a joint
representation of keypoints and semantic segmentation in
end-to-end training. This paper proposes Keypoints as Dynamic
Centroids (KDC), a new centroid-based representation for human
semantic segmentation. KDC follows a bottom-up paradigm
to generate Keypoint Feature Maps for both soft and hard
keypoints. Then the high-resolution representation of keypoints
is used as dynamic centroids in the embedding space to generate
MaskCentroid to cluster the pixels to a particular human
instance. The representation of human semantic segmentation is
enabled by proposing a new SemanticSeg module that collects
the feature of human keypoints and segmentation. Experimental
results using MSCOCO and OCHuman benchmarks demonstrate
the effectiveness and generalization ability of the proposed
method on challenging scenarios such as occlusions, entangled
limbs, and overlapped people in terms of both accuracy and
runtime performance. The code has been made available at:
https://github.com/RaiseLab/KDC.

I. INTRODUCTION

Human-body semantic segmentation is widely used for
human-computer interactions, robot-human interaction, robot
scene understanding, pedestrians crossing for self-drive cars,
real-time image/video analytics, and many more. The main
goal of human body segmentation is to identify individuals and
their activities from the 2D positioning of human joints and
their body shape structure. There are two primary challenges
for human representing semantically: (i) an unknown number
of individuals are overlapped, occluded, or have entangled
limbs, and (ii) computational complexity rapidly increases
with the number of individuals. An image can have an un-
defined number of individuals at any location and distance.
Human-to-human interactions, especially for socially engaged
ones, incur complex spatial interference because of contacts,
obstructions, and articulation of their limbs, making it difficult
to associate body parts. In turn, computational cost increases
prohibitively with the number of people in the image, calling
for an efficient, scalable, and accurate human semantic seg-
mentation model.

This paper presents KDC, a new centroid-based representa-
tion for the human semantic segmentation model. KDC uses
PoseNet to detect individual keypoint in a bottom-up manner.
Moreover, SegNet is designed to take the high confident
keypoint as a dynamic centroid to associate the pixels to the
right instance. Unlike top-down approaches [3, 6, 9, 10], KDC
detects humans without requiring a box detector or incurring
runtime complexity.
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Fig. 1: KDC architecture. Both head Networks (PoseNet and
SegNet) get high-level features from an input image (a) and
generate keypoint feature map (a) and segmentation map(b).
A highly confident keypoint (d) is used as a dynamic mask
centroid DMc (e) for the pixels in the embedding space to
assign the pixel to the right instance. Finally, the SemanticSeg
module uses the information from both networks for the final
representation of instance-level segmentation (f).

KDC is not the very first method to leverage bottom-up
approaches [14] to detect keypoints and perform segmentation
task [1, 8, 16]. However, existing models [14] use human
poses to refine pixel-wise clustering for segmentation and thus
do not perform segmentation task well. Moreover, they suffer
high overheads because of the extra computation of a person
detector [8], scalability issues, for instance, segmentation [16],
and model complexity of [1], which makes them unsuitable for
crowd scenarios and real-time applications. Unlike existing
models, KDC does not incur the high overheads associated
with top-down approaches because of the person detector, nor
the segmentation performance and scalability concerns asso-
ciated with bottom-up approaches due to pixel-wise clustering
without knowing the pixels core points.

KDC addresses the aforementioned challenges using two
primary networks: PoseNet and SegNet (Figure 1). The
PoseNet generates keypoint feature maps (KFM) from the
input image (Figure 1a) using the keypoint disk that estimates
the relative displacement between pairs of keypoints and
improves the precision of long-range, occluded, and proximate
keypoints (Figure 1b) to use them as a dynamic centroid for
mask pixels. The SegNet performs pixel-level classification
and produces a segmentation map (Figure 1c) using the dy-
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namic high confident keypoint (Figure 1d) as a MaskCentroid
(Figure 1e). The MaskCentroid defines the embedding space to
associate pixels to the right instance by using the keypoints as
centroids. At last, semantic segmentation (Figure 1f) is enabled
utilizing the high-level features from PoseNet and SegNet.

We evaluated the performance of KDC using the MSCOCO
[11], and OCHuman [16] benchmarks. To the best of our
knowledge, this is an original effort using keypoints as dy-
namic centroids that could be changed in case of rapid occlu-
sions in real-time. Compared with previous SOTA pipelines,
KDC shows better robustness in detection errors and alle-
viates the complexities of occlusions, entangled limbs, and
overlapped people.

II. RELATED WORK

There are two primary approaches to identify objects se-
mantically : (1) single-stage 1[5, 13, 2] and (2) multi-stage
[8, 15]. The single-stage generates intermediate and distributed
feature maps based on the input image. The InstanceFCN
[5] produces instance-sensitive scoring maps and applies the
assembly module to the output instance. This approach is
based on repooling and other non-trivial computations (e.g.,
mask voting), which is unfavorable for real-time processing.
YOLACT [2] runs a set of mask prototypes and uses coeffi-
cient masks to perform segmentation; however, this method is
critical to obtain a high-resolution output. Multi-stage instance
segmentation follows the detect-then-segment paradigm. It first
performs box detection, and then pixels are classified to obtain
the final mask in the box region. Mask R-CNN [8] is based on
multi-stage instance segmentation that extends Faster R-CNN
[15] by adding a branch for predicting segmentation masks
for each Region of Interest. The method presented by [12]
improves the accuracy of the Mask R-CNN by enriching the
Feature Pyramid Network features.

SOTA developments have been made to use keypoints and
perform human semantic segmentation. Pose2Seg [16] pro-
posed human pose-based instance segmentation. This method
separates instances based on the human pose, rather than the
proposal region. It takes already generated pose as input that
makes concerns an end-to-end training model. PersonLab [14]
group keypoints by using greedy decoding. This method also
reports a part-induced geometric embedding descriptor for
human class instance segmentation. However, this approach
fails to perform segmentation on highly entangled instances.
A new PosePlusSeg [1] played an important role in this
regard; however, it compromises the performance of the model
using static centroid and a couple of refined networks making
it a complex structure model. We propose a simple, yet
effective system to overcome the above complications KDC
introduces KFM and uses a high confident keypoint as a
dynamic clustering point that helps to cluster the mask pixels
to a particular instance and generate a precise semantic mask
even in high occluded cases.

III. TECHNICAL APPROACH

A. Keypoint Feature Maps
KDC generates KFM by employing the PoseNet, as illus-

trated in Figure 1b. In this stage, each individual keypoint
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Fig. 2: (a) Indicates high confident keypoints (b) shows
MaskCentroid a dynamic centroid based on the high keypoint
confidence score (c) presents a precise segmentation map (d)
represents human semantic segmentation.

is detected and concatenated for the output feature maps.
Specifically, we adopt the residual-based network for our
multi-person pose setting to produce KFM and calculate the
high confident keypoint. We modeled our keypoint prediction
as follows:

Let pi represent the keypoint position in the image, where
i = {1, . . . , N} are mapped to the 2D positions of the pixels.
A keypoint disk DR(q) = {p : ∥p−q∥ ≤ R} of radius
R is focused at point q. Additionally, let qj,k be the 2D
position of the jth keypoint of the kth person instance, where
j = {1, . . . , I} and I is the number of individual keypoints in
the image. For each known keypoint j, a binary classification
approach is followed. Specifically, every predicted keypoint
pixel pi is binary classified such that pi = 1 if pi ∈ DR for
each person keypoint j, otherwise pi = 0. Thus, for every
keypoint, there are independent dense binary classification
tasks. To obtain the KFM for each keypoint j, we define
a disk DR of radius R = 32 (diameter = 64) independent
of the keypoint scale. To equally weigh person keypoints in
the classification loss, we choose a disk radius that does not
scale according to the instance size. Note that R is constant
for all experiments in this paper for optimal results. We
train the model and compute the KFM loss based on the
annotated image positions, back-propagating across the entire
image, excluding the regions with individuals who are not
fully annotated with keypoints (e.g., crowded areas and small
individual segments).

B. MaskCentroid
Object segmenting is a practice of pixels classification

challenge where to allocate pixels to the right instance. For this
task, we use high confident keypoint 2a as dynamic centroid
and called it MaskCentroid Mc as illustrated in Figure 2b to
cluster the mask pixels with the defined centroid Ci inside
each annotated person instance with 2D mask pixels, points
from image position xi to the position Ci of the corresponding
instance. At each semantically identified human instance, the



pixels embedding e(xi) reflects a local approximation of the
absolute location of each mask pixel of an individual to whom
it corresponds, i.e., it depicts the expected 2D shape structure
of the human body. Therefore, for each pixel, we learn pixels
offset, pointing to the Ci. Every Ci is a high confident dynamic
keypoint cluster the pixels to a particular human instance in
the embedding space. The purpose of segmenting the human
body is to assign a set of pixels Pi = {m0,m1,m2, ...,mi}
and its 2D embedding vectors e(mi), into a set of instances
I = {N0, N1, N2, ..., Nj} to generate a 2D mask for each
human instance as shown in Figure 2c. Pixels are clustered to
their corresponding centroid:

Ci =
1

N

∑
mi∈Nj

mi. (1)

This is attained by defining pixel offset vector vi for each
known pixel mi, so that the resulting embedding ei = mi+vi
points from its respective instance centroid. We penalize pixel
offset loss by the L1 loss function throughout model training,
averaging and back-propagating at the image position xi that
corresponds to an instance of a specific individual entity:

L =

n∑
i=0

∥vi − v̂i∥, (2)

where v̂i = Ci−mi for mi ∈ Nj . In order to cluster the pixels
to their centroid, it is important to specify the positions of the
instance centroids and to assign pixels to a particular instance
centroid. We propose to use a gaussian function ϕj for each
instance Nj , which converts the distance between a (spatial)
pixel embedding ei = mi + vi and the instance centroid Ci

into a probability of belonging to that instance:

ϕj(ei) = exp

(
−∥ei − Ci∥2

2σ2
j

)
. (3)

The threshold for low and high probability is defined as
0.5, if the pixel embedding ei is close to the instance centroid
and is likely to belong to that instance, while a low probability
means that the pixel is more likely to belong to the background
(or another instance). More specifically, if ϕj(ei) > 0.5, than
that pixel, at location xi, will be assigned to instance Nj .
Dynamic Center of Attraction . Significant innovation has
been made in SegNet over SOTA [1]. SOTA model used
centroid as a fixed parameter to cluster the mask pixel and thus
suffered inferior results if the centroid occludes in real-time
cases. However, we can also let the network learn the optimal
center of attraction by introducing the dynamic centroid. This
can be done by defining the high confident keypoint as a
learnable parameter that could be changed in case of rapid
occlusions in real-time. By doing so, the network can influence
the location of the center of attraction by changing the location
of the embeddings:

ϕj(ei) = exp

−
∥ei −

1

|Nj |
∑

ej∈Nj
ej∥2

2σ2
j

 . (4)

During inference, using the keypoints as a dynamic centroid
for the mask pixels effectively addresses the challenging sce-
narios where more than 70% of the human body is occluded.
Our experimental study analyzes the effectiveness of both
Static MaskCentroid SMc and Dynamic MaskCentroid DMc

on human instance segmentation (§V-A).
Instance-wise Gaussian Optimization (IGO). To precisely
align the predicted semantic maps SegNet performs Gaus-
sian smoothing [4] at the instance-level, i.e., instance-wise
Gaussian optimization. We apply instance-wise smoothing to
reduce the noise and retain useful information while producing
individual semantic maps. We fix the σ ranging from 0.1
to 1 in order to obtain precise instance-level segmentation
concerning the ground truth. We find that the σ value close to
0.1 produce a more precise segmentation mask when individ-
uals are entangled and overlapped. Our ablation experiments
demonstrate this observation and the effectiveness of instance-
wise smoothing in(§V-B).

C. SemanticSeg Module
We introduce a new algorithm called SemanticSeg, which

uses the high confident keypoint as a clustering point for
human semantic segmentation, as illustrated in Figure 2a. The
SemanticSeg module uses the high-level features generated
from PoseNet and SegNet to produce the optimal semantic
map, as shown in Figure 2b. Initially, keypoints and their 2D
coordinates are cached in a priority queue. These keypoints
are then used to detect body instances and gradually connect
adjacent keypoints. High confident keypoints are calculated
based on the confident score using the keypoint disk and the
visible stability of keypoints. Further, KDC performs semantic
level segmentation for all detected humans by clustering
the pixels to its centroids defined for each human instance.
Specifically, if the pixel mi probability P (mi) > 0.5, then
that pixel at position xi is assigned to the relevant human
instance. We assume pixels with a probability threshold > 0.5
are close to the instance centroid and considers as a part of
a particular instance. Otherwise, the pixels belong to another
instance or background.

IV. EVALUATION

We evaluate KDC using the standard benchmarks, COCO
[11], and OCHuman [16] that focus on heavily occluded
individuals and compare the computational cost and inference
time with SOTA models. The model is trained end-to-end
using the COCOPersons training set. Ablations are conducted
on the COCO val set. The residual-based network ResNet-101
(RN-101) and ResNet-152 (RN-152) [7] are used for training
and testing. The hyperparameters for training were: learning
rate = 0.1×e−4, image size = 401×401, batch size = 4, and
Adam optimizer. We performed various transformations during
model training, such as scale, flip, and rotate operations. and
conducted synchronous training for 400 epochs on a single
TITAN RTX using TensorFlow.
Results. Table I and Table II present the results of COCO
Segmentation val and test sets. KDC achieved an mAP of
0.610 on the val set, and improved the AP by 0.192 compared
with PersonLab [14](multi-scale), 0.055 AP compared with



Fig. 3: Example results from COCO and CrowdPose datasets.

Models Backbone AP AP.50 AP .75 APM APL AR
PersonLab † RN-101 0.382 0.661 0.397 0.476 0.592 0.162
PersonLab † RN-152 0.387 0.667 0.406 0.483 0.595 0.163
PersonLab ‡ RN-101 0.414 0.684 0.447 0.492 0.621 0.170
PersonLab ‡ RN-152 0.418 0.688 0.455 0.497 0.621 0.170
Pose2Seg RN-50-fpn 0.555 - - 0.498 0.670 -
PosePlusSeg RN-152 0.563 0.701 0.557 0.509 0.683 0.701
KDC RN-101 0.580 0.721 0.559 0.521 0.691 0.699
KDC RN-152 0.610 0.764 0.579 0.567 0.724 0.706

TABLE I: Comparison on COCO Segmentation val set. †
indicates single-scale testing. ‡ indicates multi-scale testing.

Pose2Seg [16], and 0.047 compared with PosePlusSeg [1].
Furthermore, on the test set, KDC deliver top accuracy of
0.476 mAP and improved the AP by 0.105 over Mask-RCNN
[8], 0.059 over PersonLab[14] (multi-scale), and 0.031 over
PosePlusSeg [1]. Table III shows segmentation performance
compared with Pose2Seg [16] using the OCHuman val and
test sets. Qualitative visual results from COCO and OCHuman
datasets are presented in 3

Models Backbone AP AP.50 AP .75 APM APL AR
Mask-RCNN RNeXt-101 0.371 0.600 0.394 0.399 0.535 -
PersonLab † RN-101 0.377 0.659 0.394 0.480 0.595 0.162
PersonLab † RN-152 0.385 0.668 0.404 0.488 0.602 0.164
PersonLab ‡ RN-101 0.411 0.686 0.445 0.496 0.626 0.169
PersonLab ‡ RN-152 0.417 0.691 0.453 0.502 0.630 0.171
PosePlusSeg RN-152 0.445 0.794 0.471 0.524 0.651 0.677
KDC RN-101 0.457 0.804 0.478 0.535 0.674 0.677
KDC RN-152 0.476 0.818 0.487 0.546 0.678 0.682

TABLE II: Comparison on COCO Segmentation test set. †
indicates single-scale testing. ‡ indicates multi-scale testing.

Models Backbone Val mAP Test mAP
Pose2Seg RN-50-fpn 0.544 0.552
KDC RN-101 0.567 0.570
KDC RN-152 0.583 0.596

TABLE III: Performance comparison using OCHuman seg-
mentation val and test datasets.

Models AP AP.50 AP .75 APM APL

PersonLab 0.418 0.688 0.455 0.497 0.621
Pose2Seg 0.555 - - 0.498 0.670
PosePlusSeg 0.563 0.701 0.557 0.509 0.683
KDC:
ResNet101 (SMc) 0.568 0.721 0.561 0.531 0.690
ResNet152 (SMc) 0.570 0.734 0.565 0.547 0.698
ResNet101 (DMc) 0.599 0.751 0.572 0.551 0.717
ResNet152 (DMc) 0.610 0.764 0.579 0.567 0.724

TABLE IV: Comparison between existing models vs. KDC’s
component (SMc and DMc).

Inference Time. Figure 4 presents the average precision
(x-axis) and inference time (y-axis) of KDC with SOTA
competitors using an image size of 401 × 401 resolution.
Mask-RCNN [8] and PosePlusSeg [1] results are obtained
using COCO. Pose2Seg [16] and KDC results are obtained
on OCHuman datasets.

V. ABLATION EXPERIMENTS

A. Static vs. Dynamic MaskCentroids
We analyze the Static MaskCentroid SMc and Dynamic

MaskCentroid SMc that play an important role to divide
individuals semantically. We compared KDC’s MaskCentroid
with human segmentation models. Table IV shows the Mask-
Centroid accuracy trade-off compared with PersonLab [14],
Pose2Seg [16], and PosePlusSeg [1].

B. Impact of IGO
Finally, we examine the impact of instance-wise Gaussian

optimization on human semantic segmentation task. We tested
the sensitivity of σ ranging from 0.1 to 0.5 on human instance
segmentation. Figure 5 shows the results with different σ
values, where low σ provides a precise segmentation mask
and performs better in crowded cases.
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VI. CONCLUSION

This paper rethinks the well-known human semantic seg-
mentation problem in the context of challenging multi-person
scenarios. KDC inaugurate a keypoint feature map using
keypoint disk. In addition, a MaskCentroid is introduced
that defines the keypoints as a dynamic centroid to cluster
the pixels with the right instance in the embedding space
even in the high occlusions. The effectiveness of KDC is
evaluated using COCO and OCHuman challenging datasets.
We conclude that KDC is a highly effective approach for the
task of human semantic segmentation. Our in-depth evaluation
has demonstrated its advantages in both accuracy and run-time
performance over existing models.
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