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Abstract—Advancements in Large Language Models (LLMs)
have paved the way for versatile planning agents capable
of tackling a myriad of tasks. Nevertheless, grounding these
plans in complex, multi-room, multi-floor environments poses
a formidable challenge in robotics. To address this, we propose
SayPlan: a scalable method for LLM-based task planning in
large-scale environments by leveraging 3D Scene Graph (3DSG)
representations. Our method ensures scalability by (1) utilizing
the hierarchical structure of 3DSGs to perform a semantic search
for task-relevant subgraphs from a collapsed representation of the
full graph; (2) integrating a classical path planner to decrease the
planning horizon for the LLM, and (3) implementing an iterative
replanning mechanism, which refines initial plans based on feed-
back from a scene graph simulator correcting for unexecutable
action sequences, and preventing planning failures. We validate
our approach in two extensive environments spanning up to 3
floors, 36 rooms and 140 objects. Our results demonstrate that
SayPlan effectively translates large-scale, long-horizon task plans
from natural language instructions suitable for execution on a
mobile manipulator robot. We provide real robot demonstrations
and code on our project page sayplan.github.io

I. INTRODUCTION

Advances in Large Language Models (LLMs) [1, 2, 3]
have shown potential for common sense reasoning in robotics,
allowing for complex planning strategies for various tasks. Yet,
for these LLMs to function as effective planners, they must
adapt to the constraints of the physical environment, com-
prehend the topological arrangements and understand where
they are. Existing research has employed vision-based value
functions [4], object detectors [5, 6], and Planning Domain
Definition Language (PDDL) [7, 8] for grounding these plan-
ners, but these are often limited to small-scale environments.
Our work aims to scale these methods, proposing a framework
to ground LLM-based task planners across multiple rooms
and floors through 3D scene graph (3DSG) representations
[9, 10, 11, 12, 13, 14] which capture a rich, hierarchically-
organised semantic graph representation of an environment.

We propose three key innovations to ensure scalability.
Firstly, we enable the LLM to perform a semantic search
for a task-relevant subgraph by manipulating nodes of a
collapsed graph, allowing planning over large environments
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without exceeding token limits. Secondly, we relax the need
for LLMs to generate path-level navigational plans and instead
employ an existing optimal path planner to connect high-
level nodes generated by the LLM. Lastly, we introduce
an iterative replanning pipeline that refines the plan using
feedback from a scene graph simulator to avoid inconsistencies
and hallucinations.

Our approach, SayPlan, ensures grounded and feasible plan
generation for robots operating in expansive environments. We
evaluate our framework across 90 tasks of varying difficulty
in two large environments, including a large office floor and
a three-storey house. Our experiments demonstrate SayPlan’s
ability to scale task planning to large-scale environments
while conserving a low token footprint, providing promising
implications for real-world robotics. 1

II. RELATED WORK

The domain of robotic task planning traditionally employs
languages such as PDDL [15, 16, 17] and search methods [18,
19], supplemented by complex heuristics [20] to formulate
a solution. Despite their effectiveness, these techniques lack
versatility when expanding to more complex tasks in larger
environments. Learning-based alternatives, which include hier-
archical and reinforcement learning methods [21, 22, 23], have
data-intensive demands and struggle with scalability. Recent
works leverage LLMs for task planning and demonstrate
their ability to generate executable plans for embodied agents
by grounding them using various strategies such as object
detectors [5], value functions [4] or PDDL environment de-
scriptions [8]. However, these strategies are primarily limited
to single-room environments, often scaling poorly with an
increased number of objects or lacking a comprehensive
environment-level prior [5, 4]. In this work, we propose the
integration of hierarchical 3D scene graph representations for
grounding LLM plans in large-scale environments.

III. SAYPLAN

A. Problem Formulation

We aim to address the challenge of long-range planning
for an autonomous agent, such as a mobile manipulator
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Fig. 1: SayPlan Overview. SayPlan operates across two stages to ensure scalability: (left) Given a collapsed 3D scene graph
and a task instruction, semantic search is conducted by the LLM to identify a suitable subgraph that contains the desired items
for the task; (right) The explored subgraph is then used by the LLM to generate a high-level task plan, where a classical path
planner completes the navigational component of the plan; finally, the plan goes through an iterative replanning process with
feedback from a scene graph simulator until an executable plan is identified. Numbers at the corners of the modules represent
the order of operation.

robot, in a large-scale environment based on natural language
instructions. This requires the robot to comprehend abstract
and ambiguous instructions, understand the scene and generate
task plans involving both navigation and manipulation of a
mobile robot within an environment. Existing approaches lack
the ability to reason over scenes spanning multiple floors
and rooms. Our focus is on integrating large-scale scenes
into planning agents based on Language Models (LLMs) and
solving the scalability challenge. We aim to tackle two key
problems: 1) representing large-scale scenes within LLM token
limitations, and 2) mitigating LLM hallucinations and erro-
neous outputs when generating long-horizon plans in large-
scale environments.

B. Preliminaries
Here, we describe the 3D scene graph representation of an

environment and the components of a scene graph API which
we leverage throughout our approach.

Scene Representation: The 3D Scene Graph (3DSG) [9,
10, 12] has recently emerged as an actionable world represen-
tation for robots [11, 13, 14, 24, 25, 26], which hierarchically

abstracts the environment at multiple levels through spatial
semantics, object relationships, affordances, attributes, as well
as 3D pose information. Formally, a 3DSG is a hierarchical
multigraph G = (V,E) in which the set of vertices V
comprises V1 ∪ V2 ∪ . . . ∪ VK , with each Vk signifying the
set of vertices at a particular level of the hierarchy k. Edges
stemming from a vertex v ∈ Vk may only terminate in
Vk−1 ∪ Vk ∪ Vk+1, i.e. edges connect nodes within the same
level, or one level higher or lower. A visual depiction of this
structure is given in Figure 2.

We assume a pre-constructed 3D scene graph representation
of a large-scale environment generated using existing
techniques [13, 11, 9]. The entire 3D scene graph can
be represented as a NetworkX Graph object [27] and
text-serialised into a JSON data format which can be parsed
directly by a pre-trained LLM. An example of a single
asset node from the 3D scene graph is represented as:
{name: coffee_machine, type: asset, location:

kitchen, affordances: [turn_on, turn_off,

release], state: off, attributes: "red",



position: [2.34, 0.45, 2.23]}. The 3D Scene
Graph (3DSG) is organized in a hierarchical manner with
four primary layers: floors, rooms, assets, and objects as
shown in Figure 2. The top layer contains floors, each
of which branches out to several rooms. These rooms
are interconnected through pose nodes to represent the
environment’s topological structure. Within each room,
we find assets (immovable entities) and objects (movable
entities). Both asset and object nodes encode particulars such
as state, affordances, attributes (such as colour or weight),
and 3D pose. The graph also incorporates a dynamic agent
node, denoting a robot’s location within the scene.

Scene Graph API: The LLM is given access to an ex-
ternal API which provides it with a set of tools required
to manipulate and operate over 3DSGs. It enables the LLM
to manipulate scene graphs through expand and contract

functions, revealing connected nodes in a lower layer, or
reversing the process respectively. Furthermore, generated
plans can be verified through a task-agnostic scene graph

simulator which consists of a set of rules which verify
if actions performed on the nodes adhere to the physical
constraints, predicates and affordances present in the corre-
sponding environment.

C. Approach

Using 3D scene graph representations G and by defining
a task instruction I in natural language, we can view our
framework SayPlan as a high-level task planner π(a|I,G),
capable of generating long-horizon plans a grounded in the
large scale environment within which a mobile manipulator
robot operates. The plan can then be fed to a low-level
visually grounded motion planner for real-world execution.
An overview of the SayPlan pipeline is illustrated in Figure 1
and the corresponding pseudo-code is given in Algorithm 1.

We address the challenges that arise when planning across
these large-scale scenes by decomposing the planning pipeline
into two key stages: semantic search and iterative replanning.

Semantic Graph Search: The semantic search phase begins
with a collapsed representation of the full 3D scene graph
G, exposing only the highest level of the hierarchy to the
LLM. Given a natural language task description I, the goal
of this phase is to conduct a search, for a sub-graph G′ which
contains all the nodes necessary for solving the task. The
search is governed by the LLM’s common sense reasoning
capabilities and in-context learning from a set of input-output
examples [2, 28]. We leverage Chain-of-Thought (CoT) [29]
reasoning to help the LLM decompose complex tasks into
intermediate steps to facilitate its ability to decide on the
appropriate nodes to expand or contract using the available
API calls. At each step, the subgraph G′ in the LLM’s
previous input is updated and passed again to the LLM until
a suitable G′ is identified. The ability to contract nodes
not required for solving the task reduces the token footprint
over the course of long search sequences (see Fig. 3). To
avoid expanding already-contracted nodes, we maintain a list
of expanded nodes, passed as an additional Memory input to

the LLM. This leads to a fully Markovian decision-making
process, where the current subgraph G′ and the history of
expanded nodes are the only state inputs required for the LLM
to make its next decision. This allows it to scale to long search
sequences, unlike [30] which has to maintain the full history
of interactions. Once the LLM agent identifies that the current
subgraph has visibility over all the assets and objects required
to solve the task, it autonomously switches to the planning
phase. An example of the LLM-scene graph interaction during
semantic search is provided in Appendix VIII.

Iterative Re-planning: Given the subgraph G′, we
generate correct and feasible long-horizon task plans,
via two key mechanisms. First, we shorten the LLM’s
planning horizon by delegating pose-level path planning
to an optimal path planner, such as Dijkstra. For example,
a typical plan output such as [goto(meeting_room),

goto(pose13), goto(pose14), goto(pose8), ...,

goto(kitchen), access(fridge), open(fridge)] is
simplified to [goto(meeting_room), goto(kitchen),

access(fridge), open(fridge)]. The path planner
handles finding the optimal route between high-level locations,
allowing the LLM to focus on essential manipulation
components of the task. Secondly, we utilise the scene

graph simulator to evaluate if the generated plan
complies with the scene graph’s predicates, state, and
affordances. For instance, a pick(banana) action might fail
if the robot is already holding something, if it is not in the
correct location or if the fridge was not opened beforehand.
Such failures are transformed into textual feedback (e.g.,
”cannot pick banana”), appended to the LLM’s query,
and used to generate an updated, executable plan. This
iterative process, involving planning, validation, and feedback
integration, continues until a feasible plan is obtained. This
plan is then passed to a low-level motion planner for robotic
execution. An example of the LLM-scene graph interaction
during iterative re-planning is provided in Appendix IX.

IV. EXPERIMENTAL SETUP

We design our experiments to evaluate the 3D scene graph
reasoning capabilities of LLMs with a particular focus on
high-level task planning pertaining to a mobile manipulator
robot. We use two large-scale environments, shown in Figure
4, which exhibit multiple rooms and multiple floors which the
LLM agent has to plan across. To better ablate and showcase
the capabilities of SayPlan, we decouple its semantic search
ability from the overall causal planning capabilities using the
following two evaluation settings:

a) Semantic Search:: Here, we focus on queries which
test the semantic search capabilities of an LLM provided
with a collapsed 3D scene graph. This requires the LLM to
reason over the room and floor nodes and their corresponding
attributes in order to aid its search for the relevant assets and
objects required to solve the given task instruction. We evalu-
ate against a human baseline to understand how the semantic
search capabilities of an LLM compare to a human’s thought
process. Furthermore, to gain a better understanding of the



impact different models have on this graph-based reasoning,
we additionally compare against a variant of SayPlan using
GPT-3.5.

b) Causal Planning:: In this experiment, we evaluate
the ability of SayPlan to generate feasible plans to solve a
given natural language instruction. The evaluation metrics are
divided into two components: 1) Correctness, which primarily
validates the overall goal of the plan and its alignment to what
a human would do to solve the task and 2) Executability, which
evaluates the alignment of the plan to the constraints of the
scene graph environment and its ability to be executed by a
mobile manipulator robot. We note here that for a plan to be
executable, it does not necessarily have to be correct and vice
versa. We evaluate SayPlan against two baseline methods that
integrate an LLM for task planning:

LLM-As-Planner, which generates a full plan sequence in
an open-loop manner; the plan includes the full sequence of
both pose-level navigation and manipulation actions that the
robot must execute to complete a task, and LLM+P, an ablated
variant of SayPlan, which only incorporates the path planner to
allow for shorter horizon navigation plan sequences, however,
without any iterative re-planning.

V. RESULTS

We summarise the results for the semantic search evaluation
in Table III. SayPlan (GPT-3.5) consistently failed to reason
over the input graph representation, hallucinating nodes to ex-
plore or stagnating at exploring the same node multiple times.
SayPlan (GPT-4) in contrast achieved 86.7% and 73.3%
success in identifying the desired subgraph across both the
simple and complex search tasks respectively, demonstrating
significantly better graph-based reasoning than GPT-3.5.

While as expected the human baseline achieved 100%
on all sets of instructions, we are more interested in the
qualitative assessment of the common-sense reasoning used
during semantic search. More specifically we would like to
identify the similarity in the semantic search heuristics utilised
by humans and that used by the underlying LLM based on the
given task instruction.

A. Semantic Search

We present the full sequence of explored nodes for both
SayPlan (GPT-4) and the human baseline in Appendix IV.
As shown in the tables, SayPlan (GPT-4) demonstrates re-
markably similar performance to a human’s commonsense
reasoning for most tasks, exploring a similar sequence of nodes
given a particular instruction. For example when asked to ”find
a ripe banana”, the LLM first explores the kitchen followed
by the next most likley location, the cafeteria. In the case
where no semantics are present in the instruction such as ”find
me object K31X”, we note that the LLM agent is capable of
conducting a breadth-first-like search across all the unexplored
nodes.

An odd failure case in the simple search instructions in-
volved negation, where the agent consistently failed when
presented with questions such as ”Find me an office that

does not have a cabinet” or ”Find me a bathroom with no
toilet”. Other failure cases noted across the complex search
instructions included the LLM’s failure to conduct simple
distance-based and count-based reasoning over graph nodes.
While trivial to a human, this does require the LLM agent to
reason over multiple nodes simultaneously, where it tended to
hallucinate or miscount connected nodes. Additional ablation
studies for the semantic search pipeline are given in Appendix
III.

B. Causal Planning

The results of causal planning across simple and long-
horizon instructions (Table IV, left) reveal the effectiveness
of SayPlan. We compared its performance with two baselines:
LLM-As-Planner and LLM+P. All three methods displayed
consistent correctness in simple planning tasks (93%). How-
ever, in long-horizon tasks, LLM-As-Planner had a significant
performance drop to 33.3%. LLM+P, which incorporates a
path planner, performed better at 66.7%, highlighting the
planner’s importance. SayPlan, benefitting from both a path
planner and iterative re-planning, achieved the highest cor-
rectness rate (73.3%). The key to ensuring plan executability
is iterative re-planning. Both LLM-As-Planner and LLM+P
showed poor executability, whereas SayPlan achieved near-
perfect executability as a result of iterative re-planning, ensur-
ing plans are grounded to match the environment’s feasibility.

Detailed task plans and errors encountered are provided in
Appendix V. We summarise these errors in Table IV (right)
which shows that plans generated with LLM+P and LLM-
As-Planner entailed various types of errors limiting their ex-
ecutability. LLM+P mitigated path planning errors as a result
of the classical path planner however still suffered from errors
pertaining to the manipulation of the environment. SayPlan
mitigated these errors via iterative replanning, however in
6.67% of tasks, it failed to correct for some hallucinated nodes.
While we believe these errors could be eventually corrected via
iterative replanning, we limited the number of replanning steps
to 5 throughout all experiments. We provide an illustration of
the real-world execution of a generated plan using SayPlan
on a mobile manipulator robot coupled with a vision-guided
motion planner in Figure 7.

VI. CONCLUSION

SayPlan is a natural language-driven planning framework
for robotics that integrates hierarchical 3D scene graphs to
ground LLMs when planning across large-scale environments
spanning multiple floors and rooms. To ensure the scalability
of our approach we introduce a semantic search pipeline which
exploits the heirarchical nature of 3DSGs which significantly
reduces the number of tokens required to represent a full
environment. The feasibility of generated plans are guaranteed
using a combination of classical path planners and iterative
feedback from a scene graph simulator. Compared to existing
techniques, SayPlan yields the most correct and executable
plans suitable for direct deployment on a real world mobile
manipulator robot.
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APPENDIX

I. IMPLEMENTATION DETAILS

We utilise GPT-4 [3] as the underlying LLM agent unless
otherwise stated. We follow a similar prompting structure
to [30] as shown in Appendix VII. We define the agent’s
role, details pertaining to the scene graph environment, the
desired output structure and a set of input-output examples
which together form the static prompt used for in-context
learning. This static prompt is both task- and environment-
agnostic and takes up approximately 3900 tokens of the
LLMs input. During semantic search, both the 3D Scene
Graph and Memory components of the input prompt get
updated, while during iterative planning only the Feedback
component gets updated with information from the scene

graph simulator.

Algorithm 1: SayPlan
Given: scene graph simulator ψ, classical path planner ϕ,
large language model LLM

Inputs: prompt P , scene graph G, instruction I

1: G′ ← collapseψ(G) ▷ collapse scene graph
Stage 1: Semantic Search ▷ search scene graph for all relevant items

2: while command != terminate do
3: command ← LLM(P,G′, I)
4: if command == ’expand’ then
5: G′ ← expandψ(node id) ▷ reveal objects and assets
6: else if command == ’contract’ then
7: G′ ← contractψ(node id) ▷ nothing relevant found

Stage 2: Causal Planning ▷ generate a feasible plan
8: while feedback != success do
9: plan ← LLM(P,G′, I, feedback) ▷ high level plan

10: full plan ← ϕ(plan,G′) ▷ compute optimal path between nodes
11: feedback ← verify_planψ(full plan) ▷ forward simulate plan
12: return full plan ▷ executable plan

II. EXPERIMENTAL SETUP

Environments

We evaluate SayPlan across a set of two large-scale environ-
ments spanning multiple rooms and floors as shown in Figure
4. We provide details of each of these environments below:

Office: A large-scale office floor, spanning 36 rooms and
150 assets and objects which the agent can interact with. This
scene graph represents a real-world office floor within which
a mobile manipulator robot is present. This allows us to
embody the plans generated using SayPlan and evaluate their
feasibility in the corresponding environment. A full visual 3D
scene graph representation of the office floor is provided in
Figure 5 and 6. We utilise generic names across our scene to
maintain anonymity throughout the review process.

Fig. 2: Hierarchical Structure of a 3D Scene Graph. This
graph consists of 4 layers. Room nodes are connected to
one another via sequences of pose nodes which capture the
topological arrangement of a scene.

Home: An existing 3D scene graph from the Stanford 3D
Scene Graph dataset [9] which consists of a family home
environment (Klickitat) spanning 32 rooms across 3 floors
and contains 121 assets and objects which the agent can



Fig. 3: Scene Graph Token Progression During Semantic
Search. This graph illustrates the scalability of our approach
to large-scale 3D scene graphs

Full Graph
(Token Count)

Collapsed Graph
(Token Count) Compression Ratio

Office 4962 888 82.1%
Home 4602 1827 60.4%

TABLE I: 3D Scene Graph Token Count Number of tokens
required for the full graph vs. collapsed graph.

interact with. A 3D visual of this environment can be viewed
at the 3D Scene Graph project website.2

Tasks

We evaluate SayPlan across 4 instruction sets which are
classified to evaluate different aspects of its 3D scene graph
reasoning and planning capabilities:

Simple Search: Focused on evaluating the semantic search
capabilities of the LLM based on queries which directly
reference information in the scene graph as well as the basic
graph-based reasoning capabilities of the LMM.
Complex Search: Abstract semantic search queries which
require complex reasoning. The information required to solve
these search tasks is not readily available in the graph and has
to be inferred by the underlying LLM.
Simple Planning: Task planning queries which require the
agent to perform graph search, causal reasoning and environ-
ment interaction in order to solve the task. Typically requires
shorter horizon plans over single rooms.
Long Horizon Planning: Long Horizon planning queries
require multiple interactive steps. These queries evaluate Say-
Plan’s ability to reason over temporally extended instructions
to investigate how well it scales to such regimes. Typically
requires long horizon plans spanning multiple rooms. The full
list of instructions for each of the above sets are given in
Tables V to X.

23dscenegraph.stanford.edu/Klickitat

III. SEMANTIC SEARCH ABLATION

We additionally analyse the scalability of SayPlan during
semantic search. Table I illustrates the impact of exploiting
the hierarchical nature of 3D scene graphs and allowing the
LLM to explore the graph from a collapsed initial state. This
allows for a reduction of 82.1% in the input tokens required to
represent the Office environment and a 60.4% reduction for the
Home environment. In Figure 3, we illustrate how endowing
the LLM with the ability to contract explored nodes which
it deems unsuitable for solving the task allows it to maintain
near-constant input memory from a token perspective across
the entire semantic search process. Note that the initial number
of tokens already present represents the input prompt tokens
described in Section III-C.

https://3dscenegraph.stanford.edu/Klickitat.html


Instruction Family Num Explanation Example Instruction

Semantic Search

Simple Search 30 Queries focussed on evaluating the basic
semantic search capabilities of SayPlan Find me a ripe banana.

Complex Search 30 Abstract semantic search queries which
require complex reasoning

Find the room where people are playing
board games.

Causal Planning

Simple Planning 15
Queries which require the agent to perform
search, causal reasoning and environment
interaction in order to solve a task.

Refrigerate the orange left on the kitchen
bench.

Long-Horizon Planning 15 Long Horizon planning queries requiring
multiple interactive steps

Tobi spilt soda on his desk. Help him
clean up.

TABLE II: List of evaluation task instructions. We evaluate SayPlan on 90 instructions, grouped to test various aspects of
the planning capabilities across large-scale scene graphs. The full instruction set is given in Appendix III.

Office Home

Subtask Human SayPlan
(GPT-3.5)

SayPlan
(GPT-4) Human SayPlan

(GPT-3.5)
SayPlan
(GPT-4)

Simple Search 100% 6.6% 86.7% 100% 0.0% 86.7%
Complex Search 100% 0.0% 73.3% 100% 0.0% 73.3%

TABLE III: Evaluating the semantic search capabilities of GPT-4. The table shows the semantic search success rate in
finding a suitable subgraph for planning.

Simple Long Horizon Types of Errors

Corr Exec Corr Exec Missing
Action

Missing
Pose

Wrong
Action

Incomplete
Search

Hallucinated
Nodes

LLM+P 93.3% 13.3% 33.3% 0.0% 26.7% 0.0% 10.0% 3.33% 10.0%
LLM-As-Planner 93.3% 80.0% 66.7% 13.3% 20.0% 60.0% 0.17% 0.03% 10.0%
SayPlan 93.3% 100.0% 73.3% 86.6% 0.0% 0.0% 0.0% 0.0% 6.67%

TABLE IV: Causal Planning Results. Left: Correctness and Executability on Simple and Long Horizon planning tasks and
Right: Types of execution errors encountered when planning using LLMs. Note that SayPlan corrects the majority of the errors
faced by LLM-based planners.

Office Space
Single-Floor, Multi-Room

Home
Multi-Floor, Multi-Room

Fig. 4: Large-scale environments used to evaluate SayPlan. The environments exhibit multiple rooms and floors each
containing various assets and objects that the agent can interact with.



The full list of instructions used and the corresponding aspect the query evaluates are given in the following tables.

A. Simple Search

Instruction

Find me object K31X. ▷ unguided search with no semantic cue
Find me a carrot. ▷ semantic search based on node name
Find me anything purple in the postdoc bays. ▷ semantic search with termination conditioned on attribute
Find me a ripe banana. ▷ semantic search with termination conditioned on attribute
Find me something that has a screwdriver in it. ▷ unguided search with termination conditioned on children
One of the offices has a poster of the Terminator. Which one is it? ▷ semantic search with termination conditioned on children
I printed a document but I don’t know which printer has it. Find the document. ▷ semantic search based on parent
I left my headphones in one of the meeting rooms. Locate them. ▷ semantic search based on parent
Find the PhD bay that has a drone in it. ▷ semantic search with termination conditioned on children
Find the kale that is not in the kitchen. ▷ semantic search with termination conditioned on a negation predi-

cate on parent
Find me an office that does not have a cabinet. ▷ semantic search with termination conditioned on a negation predi-

cate on children
Find me an office that contains a cabinet, a desk, and a chair. ▷ semantic search with termination conditioned on a conjunctive query

on children
Find a book that was left next to a robotic gripper. ▷ semantic search with termination conditioned on a sibling
Luis gave one of his neighbours a stapler. Find the stapler. ▷ semantic search with termination conditioned on a sibling
There is a meeting room with a chair but no table. Locate it. ▷ semantic search with termination conditioned on a conjunctive query

with negation

TABLE V: Simple Search Instructions. Evaluated in Office Environment.

Instruction

Find me a FooBar. ▷ unguided search with no semantic cue
Find me a bottle of wine. ▷ semantic search based on node name
Find me a plant with thorns. ▷ semantic search with termination conditioned on attribute
Find me a plant that needs watering. ▷ semantic search with termination conditioned on attribute
Find me a bathroom with no toilet. ▷ semantic search with termination conditioned on a negation predi-

cate
The baby dropped their rattle in one of the rooms. Locate it. ▷ semantic search based on node name
I left my suitcase either in the bedroom or the living room. Which room is it in. ▷ semantic search based on node name
Find the room with a ball in it. ▷ semantic search based on node name
I forgot my book on a bed. Locate it. ▷ semantic search based on node name
Find an empty vase that was left next to sink. ▷ semantic search with termination conditioned on sibling
Locate the dining room which has a table, chair and a baby monitor. ▷ semantic search with termination conditioned on conjuctive query
Locate a chair that is not in any dining room. ▷ semantic search with termination conditioned on negation predicate
I need to shave. Which room has both a razor and shaving cream. ▷ semantic search with termination conditioned on children
Find me 2 bedrooms with pillows in them. ▷ semantic search with multiple returns
Find me 2 bedrooms without pillows in them. ▷ semantic search with multiple returns based on negation predicate

TABLE VI: Simple Search Instructions. Evaluated in Home Environment.



B. Complex Search

Instruction

Find object J64M. J64M should be kept at below 0 degrees Celsius. ▷ semantic search guided by implicit world knowledge (knowledge
not directly encoded in graph)

Find me something non vegetarian. ▷ semantic search with termination conditioned on implicit world
knowledge

Locate something sharp. ▷ unguided search with termination conditioned on implicit world
knowledge

Find the room where people are playing board games. ▷ semantic search with termination conditioned on ability to deduce
context from node children using world knowledge (“board game” is
not part of any node name or attribute in this graph)

Find an office of someone who is clearly a fan of Arnold Schwarzenegger. ▷ semantic search with termination conditioned on ability to deduce
context from node children using world knowledge

There is a postdoc that has a pet Husky. Find the desk that’s most likely theirs. ▷ semantic search with termination conditioned on ability to deduce
context from node children using world knowledge

One of the PhD students was given more than one complimentary T-shirts. Find
his desk.

▷ semantic search with termination conditioned on the number of
children

Find me the office where a paper attachment device is inside an asset that is
open.

▷ semantic search with termination conditioned on node descendants
and their attributes

There is an office which has a cabinet containing exactly 3 items in it. Locate
the office.

▷ semantic search with termination conditioned on the number of
children

There is an office which has a cabinet containing a rotten apple. The cabinet
name contains an even number. Locate the office.

▷ semantic search guided by numerical properties

Look for a carrot. The carrot is likely to be in a meeting room but I’m not sure. ▷ semantic search guided by used provided bias
Find me a meeting room with a RealSense camera. ▷ semantic search that has no result (no meeting room has a realsense

camera in the graph)
Find the closest fire extinguisher to the manipulation lab. ▷ search guided by node distance
Find me the closest meeting room to the kitchen. ▷ search guided by node distance
Either Filipe or Tobi has my headphones. Locate it. ▷ evaluating constrained search, early termination once the two office

are explored

TABLE VII: Complex Search Instructions. Evaluated in Office Environment.

Instruction

I need something to access ChatGPT. Where should I go? ▷ semantic search guided by implicit world knowledge
Find the livingroom that contains the most electronic devices. ▷ semantic search with termination conditioned on children with

indirect information
Find me something to eat with a lot of potassium. ▷ semantic search with termination conditioned on implicit world

knowledge
I left a sock in a bedroom and one in the living room. Locate them. They
should match.

▷ semantic search with multiple returns

Find me a potted plant that is most likely a cactus. ▷ semantic search with termination implicitly conditioned on attribute
Find the dining room with exactly 5 chairs. ▷ semantic search with termination implicitly conditioned on quantity

of children
Find me the bedroom closest to the home office. ▷ semantic search with termination implicitly conditioned on node

distance
Find me a bedroom with an unusual amount of bowls. ▷ semantic search with termination implicitly conditioned on quantity

of children
Which bedroom is empty. ▷ semantic search with termination implicitly conditioned on quantity

of children
Which bathroom has the most potted plants. ▷ semantic search with termination implicitly conditioned on quantity

of children
The kitchen is flooded. Find somewhere I can heat up my food. ▷ semantic search guided by negation
Find me the room which most likely belongs to a child ▷ semantic search with termination conditioned on ability to deduce

context from node children using world knowledge
15 guests are arriving. Locate enough chairs to seat them. ▷ semantic search with multiple returns
A vegetarian dinner was prepared in one of the dining rooms. Locate it. ▷ semantic search with selection criteria based on world knowledge
My tie is in one of the closets. Locate it. ▷ evaluating constrained search, termination after exploring closests

TABLE VIII: Complex Search Instructions. Evaluated in Home Environment.



C. Simple Planning

Instruction

Close Jason’s cabinet.
Refrigerate the orange left on the kitchen bench.
Take care of the dirty plate in the lunchroom.
Place the printed document on Will’s desk.
Peter is working hard at his desk. Get him a healthy snack.
Hide one of Peter’s valuable belongings.
Wipe the dusty admin shelf.
There is coffee dripping on the floor. Stop it.
Place Will’s drone on his desk.
Move the monitor from Jason’s office to Filipe’s.
My parcel just got delivered! Locate it and place it in the appropriate lab.
Check if the coffee machine is working.
Heat up the chicken kebab.
Something is smelling in the kitchen. Dispose of it.
Throw what the agent is holding in the bin.

TABLE IX: Simple Planning Instructions. Evaluated in Office Environment.

D. Long Horizon Planning

Instruction

Heat up the noodles in the fridge, and place it somewhere where I can enjoy it.
Throw the rotting fruit in Dimity’s office in the correct bin.
Wash all the dishes on the lunch table. Once finished, place all the clean cutlery in the drawer.
Safely file away the freshly printed document in Will’s office then place the undergraduate thesis on his desk.
Make Niko a coffee and place the mug on his desk.
Someone has thrown items in the wrong bins. Correct this.
Tobi spilt soda on his desk. Throw away the can and take him something to clean with.
I want to make a sandwich. Place all the ingredients on the lunch table.
A delegation of project partners is arriving soon. We want to serve them snacks and non-alcoholic drinks. Prepare everything in the largest meeting
room. Use items found in the supplies room only.
Serve bottled water to the attendees who are seated in meeting room 1. Each attendee can only receive a single bottle of water.
Empty the dishwasher. Place all items in their correct locations
Locate all 6 complimentary t-shirts given to the PhD students and place them on the shelf in admin.
I’m hungry. Bring me an apple from Peter and a pepsi from Tobi. I’m at the lunch table.
Let’s play a prank on Niko. Dimity might have something.
There is an office which has a cabinet containing a rotten apple. The cabinet name contains an even number. Locate the office, throw away the fruit and
get them a fresh apple.

TABLE X: Long-Horizon Planning Instructions. Evaluated in Office Environment.
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Fig. 5: 3D Scene Graph - Fully Expanded Office Environment. Full 3D scene graph exposing all the rooms, assets and
objects available in the scene. Note that the LLM agent never sees all this information unless it chooses to expand every
possible node without contraction.
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Fig. 6: 3D Scene Graph - Contracted Office Environment. Contracted 3D scene graph exposing only the highest level within
the hierarchy - room nodes. This results in an 82.1% reduction in the number of tokens required to represent the scene before
the exploration phase.



IV. SEMANTIC SEARCH EVALUATION RESULTS

- Full listings of the generated semantic search sequences for the evaluation instruction sets are provided on the following
page -



SayPlan Human Success Fail

peters_officemobile_robotics_lab robot_lounge1agriculture_labmanipulation_lab robot_lounge2

tobis_office nikos_office michaels_office

supplies_stationmobile_robotics_lab agriculture_labprinting_zone1manipulation_lab printing_zone2

admin michaels_office

kitchen

kitchen

postdoc_bay1 postdoc_bay2

postdoc_bay1 postdoc_bay2

kitchen cafeteria

kitchen cafeteria

mobile_robotics_lab robot_lounge1agriculture_labmanipulation_lab robot_lounge2

supplies_station robot_lounge1printing_zone2printing_zone1 robot_lounge2

peters_office michaels_officenikos_officetobis_office

aarons_officeluis_office dimitys_officefilipes_officewills_office chris_office

michaels_office

printing_zone1 printing_zone2

printing_zone2 printing_zone2

meeting_room1 meeting_room3meeting_room2

meeting_room1 meeting_room3meeting_room4meeting_room2

phd_bay1 phd_bay3phd_bay2

phd_bay1 phd_bay3phd_bay2

mobile_robotics_lab agriculture_labcafeteria

agriculture_lab

peters_office nikos_officetobis_office

chris_officewills_office ajays_officefilipes_officeluis_office lauriannes_office

dimitys_office peters_office tobis_office

Find me object K31X.

Find me something that has a screwdriver in it.

One of the offices has a poster of the Terminator. Which one is it?

Find me a carrot.

Find me anything purple in the postdoc bays.

Find me a ripe banana.

I printed a document, but I dont know which printer has it. Find the document.

Find me an office that does not have a cabinet.

I left my headphones in one of the meeting rooms. Locate them.

Find the PhD bay that has a drone in it.

Find the kale that is not in the kitchen.



SayPlan Human Success Fail

peters_office nikos_officetobis_office

chris_officewills_office ajay_officefilipes_officeluis_office

nikos_office

lauriannes_office

dimity_office peters_office tobis_office

mobile_robotics_lab manipulation_lab

manipulation_lab

luis_office filipes_officewills_office

luis_office filipes_officewills_office

meeting_room1 meeting_room3meeting_room2

meeting_room1 meeting_room2

Find me an office that contains a cabinet, a desk and a chair.

Find me a book that was left next to a robotic gripper.

Luis gave one of his neighbours a stapler. Find the stapler.

There is a meeting room with a chair but no table. Locate it.

TABLE XI: Simple Search Office Environment Evaluation. Sequence of Explored Nodes for Simple Search Office
Environment Instructions.



wills_office

jasons_officepeters_office michaels_officenikos_officetobis_office

laurriannes_office

aarons_office

ajays_office chris_office dimitys_office

kitchen

kitchen

kitchen

kitchen

tobis_officekitchen agriculture_labmanipultion_labmobile_robotics_lab peters_office

manipulation_lab nikos_office michaels_office

michaels_office

printing_zone2kitchen printing_zone1agriculture_labcafeteria

nikos_office

supplies_station

admin peters_office tobis_office

meeting_room4presentation_lounge meeting_room2meeting_room1cafeteria meeting_room3

meeting_room4cafeteria meeting_room2meeting_room1presentation_lounge meeting_room3

peters_office michaels_officenikos_officetobis_office

chris_office michaels_officeajays_officewills_office

postdoc_bay1 postdoc_bay2

postdoc_bay1 postdoc_bay2

phd_bay1

phd_bay1 phd_bay2

peters_office michaels_officenikos_officetobis_office

wills_office michaels_officenikos_office

wills_office

jasons_officepeters_office michaels_officenikos_officetobis_office

laurriannes_office

aarons_office

ajays_office chris_office dimitys_office

dimitys_office ajay_officechris_officelauriannes_office wills_office

jasons_officemichaels_office chris_officedimitys_officenikos_office ajays_office

wills_office

Find object J64M. J64M should be kept at below 0 degrees Celsius.

Find the office of someone who is clearly a fan of Arnold Schwarzenegger.

There is postdoc that has a pet Husky. Find the desk that’s most likely theirs.

Find me something non vegetarian.

Locate something sharp.

Find the room where people are playing board games..

One of the PhD students was given more than one complimentary T-shirt. Find his desk.

Find me the office where a paper attachment device is inside an asset that is open.

There is an office which has a cabinet containing exactly 3 items in it. Locate the office.

There is an office containing a rotten apple. The cabinet name contains an even number. Locate the office.

SayPlan Human Success Fail

TABLE XII: Complex Search Office Environment Evaluation. Sequence of Explored Nodes for Complex Search Office
Environment Instructions.



meeting_room1 meeting_room4meeting_room3meeting_room2 kitchen

meeting_room1 meeting_room4meeting_room3meeting_room2 kitchen

meeting_room1 meeting_room4meeting_room3meeting_room2 presentation_lounge

meeting_room1 meeting_room4meeting_room3meeting_room2

manipulation_lab pose15

admin

kitchen

meeting_room3

filipes_office filipes_officetobis_office

filipes_office tobis_office

Look for a carrot. The carrot is likley to be in a meeting room but I’m not sure.

Find me a meeting room with a RealSense camera.

Find the closest fire extinguisher to the manipulation lab.

Find me the closest meeting room to the kitchen.

Either Filipe or Tobi has my headphones. Locate them.

SayPlan Human Success Fail

TABLE XIII: Complex Search Office Environment Evaluation. Sequence of Explored Nodes for Complex Search Office
Environment Instructions.



dining_room0

bedroom1bathroom0 bathroom3bathroom2bathroom1

closet1

bathroom4

bedroom2 bedroom3 closet0

living_room0kitchen0 dining_room1dining_room0kitchen1 dining_room2

living_room1 living_room2

kitchen0 dining_room1dining_room0kitchen1

kitchen1kitchen0 living_room0dining_room0dining_room2 living_room1

dining_room1

bathroom1living_room0 dining_room0kitchen0living_room1 bathroom0

bedroom1living_room0 dining_room2dining_room0living_room1

bathroom1

bedroom0

dining_room1 living_room2 bathroom0

living_room0 living_room2kitchen0living_room1

bedroom1living_room0 dining_room2dining_room0living_room1 bedroom0

dining_room1 living_room2

bathroom0 bathroom2bathroom1

bathroom4 bathroom1bathroom3bathroom2

bedroom3playroom0 bedroom1bedroom0living_room0 bedroom2

bedroom3

dining_room1playroom0 living_room2living_room1living_room0

bedroom2

dining_room0

dining_room2 bedroom0 bedroom1

bedroom0 bedroom3bedroom2bedroom1 living_room0

living_room1bedroom0 bedroom3living_room2bedroom1 bedroom2

living_room0

playroom0

playroom0

bedroom0 bedroom3bedroom2bedroom1

bedroom0 bedroom3bedroom1

Find me a FooBar.

Find me a bathroom with no toilet.

The baby dropped their rattle in one of the rooms. Locate it.

Find me a bottle of wine.

Find me a plant with thorns.

Find me a plant that needs watering.

I left my suitcase either in the bedroom or the living room. Which room is it in.

Find the room with a ball in it.

I forgot my book on a bed. Locate it.

kitchen1dining_room2dining_room1home_office0 kitchen0

living_room0 living_room1 living_room2

SayPlan Human Success Fail

TABLE XIV: Simple Search Home Environment Evaluation. Sequence of Explored Nodes for Simple Search Home
Environment Instructions.



bathroom0 bathroom3bathroom2bathroom1 bathroom4

bathroom3kitchen0 bathroom1bathroom0kitchen1 bathroom2

bathroom4

dining_room0 dining_room1

dining_room0 dining_room1

living_room0 living_room1

home_office0

bathroom0 bathroom3bathroom2bathroom1

bathroom0 bathroom3bathroom2bathroom1

bedroom0 bedroom3bedroom2bedroom1

bedroom0 bedroom3bedroom2bedroom1

bedroom0 bedroom3bedroom2bedroom1

bedroom0 bedroom1

Locate the dining room which has a table, chair and a baby monitor.

Locate a chair that is not in any dining room.

Find an empty vase that was left next to a sink.

I need to shave. Which room has both a razor and shaving cream.

Find me 2 bedrooms with pillows in them.

Find me 2 bedrooms without pillows in them.

SayPlan Human Success Fail

TABLE XV: Simple Search Home Environment Evaluation. Sequence of Explored Nodes for Simple Search Home
Environment Instructions.



home_office0

home_office0

living_room0 living_room2living_room1

living_room0 living_room2living_room1

kitchen0 kitchen1

kitchen0 kitchen1

bedroom0 living_room0bedroom2bedroom1 bedroom2

living_room1bedroom0 bedroom3bedroom2bedroom1 living_room0

living_room0 kitchen0home_office0living_room1 living_room2

living_room0 living_room2living_room1

dining_room0 dining_room1

dining_room0 dining_room1

home_office0 pose1206

bedroom2

bedroom0 bedroom2bedroom1

bedroom0 bedroom2bedroom1

bedroom0 bedroom3bedroom2bedroom1

bedroom3 bedroom2

bathroom0 bathroom3bathroom2bathroom1

bathroom0 bathroom3bathroom2bathroom1

kitchen0 dining_room0kitchen1

dining_room0

I need something to access ChatGPT. Where should I go?.

Find the potted plant that is most likely a cactus.

Find the dining room with exactly 5 chairs.

Find the livingroom that contains the most electronic devices.

Find me something to eat with alot of potassium.

I left a sock in a bedrooom and in one of the livingrooms. Locate them. They should match.

Find me the bedroom closest to the home office.

The kitchen is flooded. Find somewhere I can heat up my food.

Find me the bedroom with an unusual amount of bowls.

Which bedroom is empty.

Which bathroom has the most potted plants.

dining_room2

dining_room2

closet0

SayPlan Human Success Fail

TABLE XVI: Complex Search Home Environment Evaluation. Sequence of Explored Nodes for Complex Search Home
Environment Instructions.



bedroom0 bedroom3bedroom2bedroom1

bedroom0 bedroom3bedroom2bedroom1

living_room1dining_room0 home_office0living_room0dining_room1 bedroom0

living_room2dining_room0 living_room0dining_room2dining_room1 living_room1

dining_room0 dining_room2dining_room1

dining_room0 dining_room2dining_room1

closet0 closet1

closet0 closet1

Find me the room which most likley belongs to a child.

15 guests are arriving. Locate enough chairs to seat them.

A vegetarian dinner was prepared in one of the dining rooms. Locate it.

My tie is in one of the closests. Locate it.

SayPlan Human Success Fail

TABLE XVII: Complex Search Home Environment Evaluation. Sequence of Explored Nodes for Complex Search Home
Environment Instructions.



V. CAUSAL PLANNING EVALUATION RESULTS

- Full listings of the generated planning sequences for the evaluation instruction sets are provided on the following page -



SayPlan LLM-As-PlannerLLM+P Success Fail

Close Jason's cabinet.

goto(pose13) goto(jasons_office) access(cabinet5) close(cabinet5)

goto(pose13) goto(jasons_office) access(cabinet5) close(cabinet5)

goto(pose13) goto(jasons_office) access(cabinet5) close(cabinet5)

Refrigerate the orange left on the kitchen bench.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(kitchen_bench) pickup(orange1) access(fridge)

open(fridge) release(orange1) close(fridge)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(kitchen_bench) pickup(orange1) access(fridge)

open(fridge) release(orange1) close(fridge)

goto(pose13) goto(pose14) goto(pose25) goto(kitchen) pickup(orange1)

access(fridge) open(fridge) release(orange1) close(fridge)

Take care of the dirty plate in the lunchroom.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(cafeteria) access(lunch_table) pickup(plate) goto(pose25)

goto(kitchen) access(dishwasher) open(dishwasher) release(plate)

close(dishwasher) turn_on(dishwasher)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(cafeteria) access(lunch_table) pickup(plate) goto(pose25)

goto(kitchen) access(dishwasher) open(dishwasher) release(plate)

close(dishwasher) turn_on(dishwasher)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose25)

goto(cafeteria) access(lunch_table) pickup(plate) goto(cafeteria)

goto(pose25) goto(kitchen) access(dishwasher) open(dishwasher)

release(plate) close(dishwasher) turn_on(dishwasher)

Place the printed document on Will's desk.

goto(pose13) goto(pose9) goto(pose3) goto(printing_zone2) access(printer2)

pickup(document) goto(pose3) goto(pose9) goto(pose10)

goto(wills_office) access(desk4) release(document)

goto(pose13) goto(pose9) goto(pose3) goto(printing_zone2) access(printer2)

pickup(document) goto(pose3) goto(pose9) goto(pose10)

goto(wills_office) access(desk4) release(document)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(printing_zone1) pickup(printed_document) goto(pose24) goto(pose23)

goto(pose14) goto(pose10) goto(wills_office) release(printed_document)



Hide one of Peter's valuable belongings.

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(peters_office)

access(desk2) pickup(phone) access(cabinet2) open(cabinet2)

release(phone) close(cabinet2)

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(peters_office)

access(desk2) pickup(phone) access(cabinet2) open(cabinet2)

release(phone) close(cabinet2)

goto(pose1) goto(peters_office) access(cabinet2) open(cabinet2) access(desk2)

pickup(phone) access(cabinet2) release(phone) close(cabinet2)

Peter is working hard at his desk. Get him a healthy snack.

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(peters_office)

access(cabinet2) open(cabinet2) pickup(apple3) release(apple3)

access(cabinet2) open(cabinet2) pickup(apple3) goto(pose7) goto(pose5)

goto(pose2) goto(pose1) goto(peters_office) release(apple3)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

access(kitchen_bench) pickup(kale_leaves2) goto(kitchen) goto(pose25)

goto(pose23) goto(pose14) goto(pose13) goto(peters_office)

access(desk2) release(kale_leaves2)

Wipe the dusty admin shelf.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard1) open(cupboard1) pickup(paper_towel) goto(pose24)

goto(pose23) goto(pose15) goto(pose18) goto(admin)

access(shelf) release(paper_towel)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard1) open(cupboard1) pickup(paper_towel) goto(pose24)

goto(pose23) goto(pose15) goto(pose18) goto(admin)

access(shelf) release(paper_towel)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

goto(cupboard1) open(cupboard1) pickup(paper_towel) goto(supplies_station)

goto(pose24) goto(pose23) goto(pose14) goto(admin)

action(wipe_shelf)

There is coffee dripping on the floor. Stop it.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) turn_off(coffee_machine)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) turn_off(coffee_machine)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

goto(coffee_machine) turn_off(coffee_machine)

SayPlan LLM-As-PlannerLLM+P Success Fail



Check if the coffee machine is working.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) turn_on(coffee_machine) turn_off(coffee_machine)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) turn_on(coffee_machine) turn_off(coffee_machine)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

goto(coffee_machine) turn_on(coffee_machine) turn_off(coffee_machine)

Place Will's drone on his desk.

goto(pose13) goto(pose9) goto(pose10) goto(wills_office) access(cabinet4)

open(cabinet4) pickup(drone2) access(desk4) release(drone2)

goto(pose13) goto(pose9) goto(pose10) goto(wills_office) access(cabinet4)

open(cabinet4) pickup(drone2) access(desk4) release(drone2)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose10)

goto(wills_office) access(cabinet4) open(cabinet4) pickup(drone2)

close(cabinet4) goto(wills_office) access(desk4) release(drone2)

Move the monitor from Jason's office to Filipe's.

goto(pose13) goto(jasons_office) access(desk5) pickup(monitor) goto(pose13)

goto(pose9) goto(pose10) goto(filipes_office) access(desk37)

release(monitor)

goto(pose13) goto(jasons_office) access(desk5) pickup(monitor) goto(pose13)

goto(pose9) goto(pose10) goto(filipes_office) access(desk37)

release(monitor)

goto(pose8) goto(pose13) goto(jasons_office) pickup(monitor) goto(pose13)

goto(pose9) goto(pose10) goto(filipes_office) release(monitor)

My parcel just got delivered! Locate it and place it in the appropriate lab.

goto(pose13) goto(pose14) goto(lobby) access(shelf2) pickup(parcel)

goto(pose14) goto(pose13) goto(pose8) goto(mobile_robotics_lab)

access(table4) release(parcel)

goto(pose13) goto(pose14) goto(lobby) access(shelf2) pickup(parcel)

goto(pose14) goto(pose13) goto(pose8) goto(mobile_robotics_lab)

access(table4) release(parcel)

goto(pose8) goto(pose13) goto(pose14) goto(lobby) access(shelf2)

pickup(parcel) goto(lobby) goto(pose14) goto(pose13)

goto(pose8) goto(mobile_robotics_lab) access(table4) release(parcel)

SayPlan LLM-As-PlannerLLM+P Success Fail



Heat up the chicken kebab.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(chicken_kebab)

close(fridge) access(microwave) open(microwave) release(chicken_kebab)

close(microwave) turn_on(microwave) turn_off(microwave) open(microwave)

pickup(chicken_kebab) close(microwave)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(chicken_kebab)

close(fridge) access(microwave) open(microwave) release(chicken_kebab)

turn_on(microwave) turn_off(microwave) open(microwave) pickup(chicken_kebab)

close(microwave)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(chicken_kebab)

close(fridge) access(microwave) open(microwave) release(chicken_kebab)

close(microwave) turn_on(microwave) turn_off(microwave) open(microwave)

pickup(chicken_kebab) close(microwave)

Something is smelling in the kitchen. Dispose of it.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(salmon_bagel)

access(compost_bin) open(compost_bin) release(salmon_bagel) close(compost_bin)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(salmon_bagel)

access(compost_bin) open(compost_bin) release(salmon_bagel) close(compost_bin)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(salmon_bagel)

close(fridge) goto(rubbish_bin) open(rubbish_bin) release(salmon_bagel)

close(rubbish_bin)

Throw what the agent is holding in the bin.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(recycling_bin) open(recycling_bin) release(sweet_wrapper)

close(recycling_bin)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(recycling_bin) release(sweet_wrapper)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

goto(rubbish_bin) release(sweet_wrapper)

SayPlan LLM-As-PlannerLLM+P Success Fail



Heat up the noodles in the fridge, and place it somewhere where I can enjoy it.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(noodles)

access(microwave) open(microwave) release(noodles) close(microwave)

turn_on(microwave) turn_off(microwave) open(microwave) pickup(noodles)

goto(pose25) goto(cafeteria) access(lunch_table) release(noodles)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(noodles)

access(microwave) open(microwave) release(noodles) turn_on(microwave)

turn_off(microwave) open(microwave) pickup(noodles) goto(pose25)

goto(cafeteria) access(lunch_table) release(noodles)

goto(pose25) goto(kitchen) access(fridge) open(fridge) pickup(noodles)

close(fridge) access(microwave) open(microwave) release(noodles)

close(microwave) turn_on(microwave) turn_off(microwave) open(microwave)

pickup(noodles) close(microwave) goto(cafeteria) release(noodles)

Throw the rotting fruit in Dimity's office in the correct bin.

goto(pose13) goto(pose14) goto(pose23) goto(pose22) goto(dimitys_office)

access(cabinet3) open(cabinet3) pickup(apple2) goto(pose22)

goto(pose23) goto(pose24) goto(pose25) goto(kitchen)

access(compost_bin) open(compost_bin) release(apple2)

goto(pose13) goto(pose14) goto(pose23) goto(pose22) goto(dimitys_office)

access(cabinet3) open(cabinet3) pickup(apple2) goto(pose22)

goto(pose23) goto(pose24) goto(pose25) goto(kitchen)

access(compost_bin) release(apple2)

goto(pose13) goto(pose14) goto(pose23) goto(pose22) goto(dimitys_office)

access(cabinet3) pickup(apple2) goto(dimitys_office) goto(pose22)

goto(pose23) goto(pose25) goto(kitchen) access(recycling_bin)

release(apple2)

SayPlan LLM-As-PlannerLLM+P Success Fail



Wash all the dishes on the lunch table. Once finished, place all the clean cutlery in the drawer.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(cafeteria) access(lunch_table) pickup(plate) goto(pose25)

goto(kitchen) access(drawer) open(drawer) release(plate)

goto(pose25) goto(cafeteria) access(lunch_table) pickup(fork)

goto(pose25) goto(kitchen) access(drawer) release(fork)

goto(pose25) goto(cafeteria) access(lunch_table) pickup(knife)

goto(pose25) goto(kitchen) access(drawer) release(knife)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(cafeteria) access(lunch_table) pickup(plate) pickup(fork)

pickup(knife) goto(pose25) goto(kitchen) access(drawer)

release(plate) release(fork) release(knife)

goto(pose25) goto(cafeteria) goto(lunch_table) pickup(plate) pickup(fork)

pickup(knife) goto(pose25) goto(kitchen) goto(dishwasher)

open(dishwasher) release(plate) release(fork) release(knife)

close(dishwasher) turn_on(dishwasher) turn_off(dishwasher) open(dishwasher)

pickup(plate) pickup(fork) pickup(knife) goto(drawer)

open(drawer) release(fork) release(knife) close(drawer)

Safely file away the freshly printed document in Will's office then place the undergraduate thesis on his desk.

goto(pose13) goto(pose9) goto(pose3) goto(printing_zone2) access(printer2)

pickup(document) goto(pose3) goto(pose9) goto(pose10)

goto(wills_office) access(cabinet4) open(cabinet4) release(document)

close(cabinet4) access(cabinet4) open(cabinet4) pickup(undergrad_thesis1)

close(cabinet4) access(desk4) release(undergrad_thesis1)

pickup(document) goto(pose13) goto(pose9) goto(pose10) goto(wills_office)

access(cabinet4) open(cabinet4) release(document) close(cabinet4)

access(desk4) pickup(undergrad_thesis1) release(undergrad_thesis1)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(printing_zone1) pickup(freshly_printed_document) goto(pose24) goto(pose23)

goto(pose14) goto(pose13) goto(pose9) goto(pose10)

goto(wills_office) access(cabinet4) open(cabinet4) release(freshly_printed_document)

pickup(undergrad_thesis1) close(cabinet4) access(desk4) release(undergrad_thesis1)
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Make Niko a coffee and place the mug on his desk.

goto(pose7) goto(pose5) goto(nikos_office) access(desk1) pickup(coffee_mug)

goto(pose5) goto(pose7) goto(pose16) goto(pose18)

goto(pose15) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) release(coffee_mug) turn_on(coffee_machine)

turn_off(coffee_machine) pickup(coffee_mug) goto(pose25) goto(pose24)

goto(pose23) goto(pose15) goto(pose18) goto(pose16)

goto(pose7) goto(pose5) goto(nikos_office) access(desk1)

release(coffee_mug)

goto(pose7) goto(pose5) goto(nikos_office) access(desk1) pickup(coffee_mug)

goto(pose5) goto(pose7) goto(pose8) goto(pose13)

goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(coffee_machine) release(coffee_mug) turn_on(coffee_machine)

turn_off(coffee_machine) pickup(coffee_mug) goto(pose25) goto(pose24)

goto(pose23) goto(pose14) goto(pose13) goto(pose8)

goto(pose7) goto(pose5) goto(nikos_office) access(desk1)

release(coffee_mug)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(pose25) goto(kitchen) pickup(coffee_mug) goto(pose25)

goto(pose24) goto(pose23) goto(pose14) goto(pose13)

goto(pose5) goto(nikos_office) goto(desk1) release(coffee_mug)

Someone has thrown items in the wrong bins. Correct this.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(recycling_bin) open(recycling_bin) pickup(milk_carton)

access(rubbish_bin) open(rubbish_bin) release(milk_carton) access(recycling_bin)

pickup(orange_peel) release(orange_peel) access(recycling_bin) pickup(apple_core)

release(apple_core) access(rubbish_bin) pickup(banana_peel) access(recycling_bin)

release(banana_peel) access(rubbish_bin) pickup(plastic_bottle) release(plastic_bottle)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(recycling_bin) open(recycling_bin) pickup(milk_carton)

access(rubbish_bin) open(rubbish_bin) release(milk_carton) access(recycling_bin)

pickup(orange_peel) release(orange_peel) access(recycling_bin) pickup(apple_core)

release(apple_core) access(rubbish_bin) pickup(banana_peel) access(recycling_bin)

release(banana_peel) access(rubbish_bin) pickup(plastic_bottle) release(plastic_bottle)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

goto(recycling_bin) pickup(milk_carton) goto(rubbish_bin) release(milk_carton)

goto(recycling_bin) pickup(orange_peel) goto(rubbish_bin) release(orange_peel)

goto(recycling_bin) pickup(apple_core) goto(rubbish_bin) release(apple_core)

goto(rubbish_bin) pickup(banana_peel) goto(recycling_bin) release(banana_peel)

goto(rubbish_bin) pickup(plastic_bottle) goto(recycling_bin) release(plastic_bottle)
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Tobi spilt soda on his desk. Throw away the can and take him something to clean with.

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(tobis_office)

access(desk38) pickup(pepsi) goto(pose1) goto(pose2)

goto(pose3) goto(pose9) goto(pose13) goto(pose14)

goto(pose23) goto(pose24) goto(pose25) goto(kitchen)

access(recycling_bin) open(recycling_bin) release(pepsi) goto(pose25)

goto(pose24) goto(supplies_station) access(cupboard1) open(cupboard1)

pickup(paper_towel) goto(pose24) goto(pose23) goto(pose14)

goto(pose13) goto(pose9) goto(pose3) goto(pose2)

goto(pose1) goto(tobis_office) access(desk38) release(paper_towel)

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(tobis_office)

access(desk38) pickup(pepsi) goto(pose1) goto(pose2)

goto(pose3) goto(pose9) goto(pose13) goto(pose14)

goto(pose23) goto(pose24) goto(pose25) goto(kitchen)

access(recycling_bin) release(pepsi) goto(pose25) goto(pose24)

goto(supplies_station) access(cupboard1) pickup(paper_towel) goto(pose24)

goto(pose23) goto(pose14) goto(pose13) goto(pose9)

goto(pose3) goto(pose2) goto(pose1) goto(tobis_office)

release(paper_towel)

goto(pose8) goto(pose13) goto(tobis_office) access(desk38) pickup(pepsi)

goto(tobis_office) goto(pose1) goto(pose2) goto(pose5)

goto(kitchen) access(recycling_bin) release(pepsi) goto(kitchen)

goto(pose5) goto(pose2) goto(pose24) goto(supplies_station)

access(cupboard1) pickup(paper_towel) goto(supplies_station) goto(pose24)

goto(pose2) goto(pose5) goto(pose1) goto(tobis_office)

access(desk38) release(paper_towel)
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I want to make a sandwich. Place all the ingredients on the lunch table.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(kitchen_bench) pickup(bread) goto(pose25)

goto(cafeteria) access(lunch_table) release(bread) goto(pose25)

goto(kitchen) access(kitchen_bench) pickup(butter) goto(pose25)

goto(cafeteria) access(lunch_table) release(butter) goto(pose25)

goto(kitchen) access(fridge) open(fridge) pickup(cheese)

goto(pose25) goto(cafeteria) access(lunch_table) release(cheese)

goto(pose25) goto(kitchen) access(fridge) pickup(tomato)

goto(pose25) goto(cafeteria) access(lunch_table) release(tomato)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(kitchen_bench) pickup(bread) goto(pose25)

goto(cafeteria) release(bread) goto(pose25) goto(kitchen)

pickup(butter) goto(pose25) goto(cafeteria) release(butter)

goto(pose25) goto(kitchen) access(fridge) open(fridge)

pickup(cheese) goto(pose25) goto(cafeteria) release(cheese)

goto(pose25) goto(kitchen) pickup(tomato) goto(pose25)

goto(cafeteria) release(tomato)

goto(pose13) goto(pose14) goto(pose23) goto(pose25) goto(kitchen)

pickup(cheese) pickup(tomato) pickup(kale_leaves2) pickup(bread)

pickup(butter) goto(pose25) goto(pose26) goto(presentation_lounge)

release(cheese) release(tomato) release(kale_leaves2) release(bread)

release(butter)
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A delegation of project partners is arriving soon. We want to serve them snacks and non-alcoholic drinks. Prepare everything in the largest meeting room. Use items 
found in the supplies room only.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard2) open(cupboard2) pickup(orange_juice) goto(pose24)

goto(pose25) goto(pose26) goto(meeting_room3) access(table1)

release(orange_juice) goto(pose26) goto(pose25) goto(pose24)

goto(supplies_station) access(cupboard2) pickup(biscuits) goto(pose24)

goto(pose25) goto(pose26) goto(meeting_room3) access(table1)

release(biscuits)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard2) open(cupboard2) pickup(orange_juice) goto(pose24)

goto(pose25) goto(pose26) goto(meeting_room3) release(orange_juice)

goto(pose26) goto(pose25) goto(pose24) goto(supplies_station)

pickup(biscuits) goto(pose24) goto(pose25) goto(pose26)

goto(meeting_room3) release(biscuits)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(supplies_station) open(cupboard2) pickup(bottled_water1) pickup(bottled_water2)

pickup(bottled_water3) pickup(bottled_water4) pickup(bottled_water5) pickup(orange_juice)

pickup(biscuits) close(cupboard2) goto(pose24) goto(pose25)

goto(pose26) goto(meeting_room3) release(bottled_water1) release(bottled_water2)

release(bottled_water3) release(bottled_water4) release(bottled_water5) release(orange_juice)

release(biscuits)

Empty the dishwasher. Place all items in their correct locations

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(dishwasher) open(dishwasher) pickup(plate2)

access(cabinet) open(cabinet) release(plate2) access(dishwasher)

pickup(bowl) access(cabinet) release(bowl) access(dishwasher)

pickup(spoon) access(drawer) open(drawer) release(spoon)

close(drawer) access(cabinet) close(cabinet) access(dishwasher)

close(dishwasher)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(kitchen) access(dishwasher) open(dishwasher) pickup(plate2)

access(cabinet) release(plate2) access(dishwasher) pickup(bowl)

access(cabinet) release(bowl) access(dishwasher) pickup(spoon)

access(drawer) release(spoon) close(dishwasher)

goto(pose13) goto(pose14) goto(pose23) goto(pose15) goto(kitchen)

access(dishwasher) open(dishwasher) pickup(plate2) goto(kitchen)

access(cabinet) release(plate2) goto(kitchen) access(dishwasher)

pickup(bowl) goto(kitchen) access(cabinet) release(bowl)

goto(kitchen) access(dishwasher) pickup(spoon) goto(kitchen)

access(drawer) release(spoon) goto(kitchen) access(dishwasher)

close(dishwasher)
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Serve bottled water to the attendees who are seated in meeting room 1. Each attendee can only receive a single bottle

of water.

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard2) open(cupboard2) pickup(bottled_water1) goto(pose24)

goto(pose23) goto(pose14) goto(pose13) goto(pose9)

goto(pose3) goto(pose2) goto(meeting_room1) access(table5)

release(bottled_water1) goto(pose2) goto(pose3) goto(pose9)

goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(supplies_station) access(cupboard2) pickup(bottled_water2) goto(pose24)

goto(pose23) goto(pose14) goto(pose13) goto(pose9)

goto(pose3) goto(pose2) goto(meeting_room1) access(table5)

release(bottled_water2) goto(pose2) goto(pose3) goto(pose9)

goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(supplies_station) access(cupboard2) pickup(bottled_water3) goto(pose24)

goto(pose23) goto(pose14) goto(pose13) goto(pose9)

goto(pose3) goto(pose2) goto(meeting_room1) access(table5)

release(bottled_water3)

goto(pose13) goto(pose14) goto(pose23) goto(pose24) goto(supplies_station)

access(cupboard2) pickup(bottled_water1) goto(pose24) goto(pose23)

goto(pose14) goto(pose13) goto(pose9) goto(pose3)

goto(pose2) goto(meeting_room1) release(bottled_water1) goto(pose2)

goto(pose3) goto(pose9) goto(pose13) goto(pose14)

goto(pose23) goto(pose24) goto(supplies_station) access(cupboard2)

pickup(bottled_water2) goto(pose24) goto(pose23) goto(pose14)

goto(pose13) goto(pose9) goto(pose3) goto(pose2)

goto(meeting_room1) release(bottled_water2) goto(pose2) goto(pose3)

goto(pose9) goto(pose13) goto(pose14) goto(pose23)

goto(pose24) goto(supplies_station) access(cupboard2) pickup(bottled_water3)

goto(pose24) goto(pose23) goto(pose14) goto(pose13)

goto(pose9) goto(pose3) goto(pose2) goto(meeting_room1)

release(bottled_water3)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(supplies_station)

pickup(bottled_water1) goto(pose23) goto(pose14) goto(pose1)

goto(meeting_room1) release(bottled_water1) goto(pose1) goto(pose14)

goto(pose23) goto(supplies_station) pickup(bottled_water2) goto(pose23)

goto(pose14) goto(pose1) goto(meeting_room1) release(bottled_water2)

goto(pose1) goto(pose14) goto(pose23) goto(supplies_station)

pickup(bottled_water3) goto(pose23) goto(pose14) goto(pose1)

goto(meeting_room1) release(bottled_water3)
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Locate all 6 complimentary t-shirts given to the PhD students and place them on the shelf in admin.

goto(pose7) goto(pose5) goto(pose6) goto(phd_bay1) access(desk9)

pickup(complimentary_tshirt1) goto(pose6) goto(pose5) goto(pose7)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt1) goto(pose18) goto(pose16) goto(pose7)

goto(pose5) goto(pose6) goto(phd_bay1) access(desk10)

pickup(complimentary_tshirt2) goto(pose6) goto(pose5) goto(pose7)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt2) goto(pose18) goto(pose16) goto(pose17)

goto(phd_bay2) access(desk15) pickup(complimentary_tshirt3) goto(pose17)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt3) goto(pose18) goto(pose16) goto(pose17)

goto(phd_bay2) access(desk18) pickup(complimentary_tshirt4) goto(pose17)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt4) goto(pose18) goto(pose16) goto(pose17)

goto(phd_bay2) access(desk18) pickup(complimentary_tshirt6) goto(pose17)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt6) goto(pose18) goto(pose19) goto(phd_bay4)

access(desk25) pickup(complimentary_tshirt5) goto(pose19) goto(pose18)

goto(admin) access(shelf) release(complimentary_tshirt5)

goto(pose7) goto(pose5) goto(pose6) goto(phd_bay1) access(desk9)

pickup(complimentary_tshirt1) goto(pose6) goto(pose5) goto(pose7)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt1) goto(pose18) goto(pose16) goto(pose7)

goto(pose5) goto(pose6) goto(phd_bay1) access(desk10)

pickup(complimentary_tshirt2) goto(pose6) goto(pose5) goto(pose7)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt2) goto(pose18) goto(pose16) goto(pose17)

goto(phd_bay2) access(desk15) pickup(complimentary_tshirt3) goto(pose17)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt3) goto(pose18) goto(pose16) goto(pose17)

goto(phd_bay2) access(desk18) pickup(complimentary_tshirt4) goto(pose17)

goto(pose16) goto(pose18) goto(admin) access(shelf)

release(complimentary_tshirt4) access(desk18) pickup(complimentary_tshirt6) access(shelf)

release(complimentary_tshirt6) goto(pose18) goto(pose19) goto(phd_bay4)

access(desk25) pickup(complimentary_tshirt5) goto(pose19) goto(pose18)

goto(admin) access(shelf) release(complimentary_tshirt5)

SayPlan LLM-As-PlannerLLM+P Success Fail



I'm hungry. Bring me an apple from Peter and a pepsi from Tobi. I'm at the lunch table.

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(peters_office)

access(cabinet2) open(cabinet2) pickup(apple3) goto(pose1)

goto(tobis_office) access(desk38) pickup(pepsi) goto(pose1)

goto(pose2) goto(pose3) goto(pose9) goto(pose13)

goto(pose14) goto(pose23) goto(pose24) goto(pose25)

goto(cafeteria) release(apple3) release(pepsi)

goto(pose13) goto(pose14) goto(pose23) goto(pose1) goto(peters_office)

pickup(apple3) goto(pose1) goto(tobis_office) pickup(pepsi)

goto(pose1) goto(pose23) goto(pose25) goto(cafeteria)

release(apple3) release(pepsi)

Let's play a prank on Niko. Dimity might have something.

goto(pose13) goto(pose14) goto(pose23) goto(pose22) goto(dimitys_office)

access(desk3) pickup(buzzer) goto(pose22) goto(pose23)

goto(pose15) goto(pose18) goto(pose16) goto(pose7)

goto(pose5) goto(nikos_office) access(chair1) release(buzzer)

goto(pose13) goto(pose14) goto(pose23) goto(pose22) goto(dimitys_office)

access(desk3) pickup(buzzer) goto(pose22) goto(pose23)

goto(pose15) goto(pose18) goto(pose16) goto(pose7)

goto(pose5) goto(nikos_office) access(chair_niko) release(buzzer)

goto(pose8) goto(pose13) goto(pose14) goto(pose23) goto(pose22)

goto(dimitys_office) access(desk3) pickup(buzzer)

goto(pose7) goto(pose5) goto(pose2) goto(pose1) goto(peters_office)

access(cabinet) open(cabinet) pickup(apple3) goto(pose1)

goto(tobis_office) access(desk38) release(apple3) pickup(pepsi)

goto(pose1) goto(pose2) goto(pose3) goto(pose9)

goto(pose13) goto(pose14) goto(pose23) goto(pose24)

goto(pose25) goto(cafeteria) release(pepsi)
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VI. REAL WORLD EXECUTION OF A GENERATED LONG HORIZON PLAN.
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Fig. 7: Real World Execution of a Generated Long Horizon Plan. Execution of a generated plan on a real world mobile
manipulator robot.



VII. INPUT PROMPT STRUCTURE

Input prompt passed to the LLM for SayPlan. Note that the components highlighted in violet represent static components
of the prompt that remain fixed throughout both the semantic search and iterative re-planning phases of SayPlan.

Agent Role: You are an excellent graph planning agent. Given a graph representation of an
environment, you can explore the graph by expanding nodes to find the items of interest. You can
then use this graph to generate a step-by-step task plan that the agent can follow to solve a given
instruction.
Environment Functions:
goto(<pose>): Move the agent to any room node or pose node.
access(<asset>): Provide access to the set of affordances associated with an asset node and its
connected objects.
pickup(<object>): Pick up an accessible object from the accessed node.
release(<object>): Release grasped object at an asset node.
turn_on/off(<object>): Toggle object at agent’s node, if accessible and has affordance.
open/close(<asset>): Open/close asset at agent’s node, affecting object accessibility.
done(): Call when the task is completed.
Environment State:
ontop_of(<asset>): Object is located on <asset>
inside_of(<asset>): Object is located inside <asset>
inside_hand: Object is currently being grasped by the robot/agent
closed: Asset can be opened
open: Asset can be closed or kept open
on: Asset is currently on
off: Asset is currently off
accessible: The object is not accessible if it is inside an asset and the asset state is "closed".
Environment API:
expand_node(<node>): Reveal assets/objects connected to a room/floor node.
contract_node(<node>): Hide assets/objects, reducing graph size for memory constraints.
verify_plan(): Verify generated plan in the scene graph environment.
Output Response Format:
{chain_of_thought: break your problem down into a series of intermediate reasoning steps to help you
determine your next command,
reasoning: justify why the next action is important
mode: "exploring" OR "planning"
command: {"command_name": Environment API call

"node_id": node to perform an operation on
"plan": task plan if in planning mode}}

Example: <see Appendix VII and VIII.>
Instruction: Natural language description of the task
3D Scene Graph: Text-serialised JSON description of a 3D scene graph
Memory: History of previously expanded nodes
Feedback: External textual feedback from scene graph simulator
Ensure the response can be parsed by Python json.loads.



VIII. EXAMPLE INPUT-OUTPUT INTERACTION BETWEEN LLM AND SCENE GRAPH SIMULATOR DURING SEMANTIC
SEARCH

Instruction: make a coffee for Tom and place it in his room
3D Scene Graph: {nodes: {room: [{id: bobs_room}, {id: toms_room}, {id: jacks_room}, {id: kitchen},
{id: livingroom}], pose: [{id: pose1}, {id: pose2}, {id: pose3}, {id: pose4}, {id: pose5}], agent:
[{location: bobs_room, id: agent}]}, links: [bobs_room↔pose1, bobs_room↔agent, toms_room↔pose1,
toms_room↔pose2, toms_room↔pose5, jacks_room↔pose2, jacks_room↔pose3, kitchen↔pose3,
kitchen↔pose4, kitchen↔pose5, livingroom↔pose4]}
Memory: []
SayPlan [Mode->Search]: chain-of-thought: explore graph for coffee mug, coffee machine and
somewhere to place the coffee -> perform common sense exploration first -> explore toms room ->
explore kitchen -> if items not found then explore other nodes
reasoning: i will expand toms room
command: expand(toms_room)
Scene Graph Simulator: <Updated 3D scene graph>
Memory: [toms_room]
SayPlan [Mode->Search]: chain-of-thought: i have found a wardrobe in tom’s room -> leave this node
expanded -> the coffee mug is not in his room -> still have not found the coffee machine -> kitchen
might have coffee machine and coffee mug -> explore this node next
reasoning: i will expand the kitchen next
command: expand(kitchen)
Scene Graph Simulator: <Updated 3D scene graph>
Memory: [toms_room, kitchen]
SayPlan [Mode->Search]: chain-of-thought: i’ve found the coffee machine in the kitchen -> the coffee
mug however is not in the kitchen -> i will explore other unexpanded nodes now for the coffee mug ->
jacks room, bobs room and the living room are unexplored yet -> i will try jack"s room next
reasoning: i will expand jacks room next
command: expand(jacks_room)
Scene Graph Simulator: <Updated 3D scene graph>
Memory: [toms_room, kitchen, jacks_room]
SayPlan [Mode->Search]: chain-of-thought: jacks room does not have anything relevant towards
solving this task -> I should contract this node to save token memory -> i will explore other
unexplored nodes after doing this
reasoning: contract jack’s room to save memory
command: contract(jacks_room)
Scene Graph Simulator: <Updated 3D scene graph>
Memory: [toms_room, kitchen, jacks_room]
SayPlan [Mode->Search]: chain-of-thought: i have found a wardrobe in tom’s room and coffee machine
in the kitchen -> the coffee mug is still required for the task -> explore a new room next
reasoning: i will expand bob’s room as it is unexplored
command: expand(bobs_room)
Scene Graph Simulator: <Updated 3D scene graph>
Memory: [toms_room, kitchen, jacks_room, bobs_room]
SayPlan [Mode->Search]: chain-of-thought: i have found the coffee mug, the coffee machine and tom’s
wardrobe on the graph -> search complete -> I will switch to planning mode-> collect coffee mug ->
generate plan for making coffee -> place coffee mug on Tom’s wardrobe
reasoning: I will generate a task plan using the identified subgraph



IX. EXAMPLE INPUT-OUTPUT INTERACTION BETWEEN LLM AND SCENE GRAPH ENVIRONMENT DURING ITERATIVE
RE-PLANNING

Instruction: make a coffee for Tom and place it in his room
3D Scene Graph: {nodes: {room: [{id: bobs_room}, {id: toms_room}, {id: jacks_room}, {id: kitchen},
{id: livingroom}], pose: [{id: pose1}, {id: pose2}, {id: pose3}, {id: pose4}, {id: pose5}],
agent: [{location: bobs_room, id: agent}], asset: [{room: toms_room, state: free, affordances:
[release], id: bed2}, {room: toms_room, state: closed, affordances: [open, close, release], id:
wardrobe2}, {room: kitchen, state: closed, affordances: [open, close, release], id: fridge},
{room: kitchen, affordances: [turn_on, turn_off], state: off, id: coffee_machine}, {room:
bobs_room, state: free, affordances: [release], id: bed1}, {room: bobs_room, state: closed,
affordances: [open, close, release], id: wardrobe1}], object: [{affordances: [pickup], state:
inside_of(wardrobe1), attributes: "blue", id: coffee_mug}]}, links: [bobs_room↔pose1,
bobs_room↔agent, bobs_room↔bed1, bobs_room↔wardrobe1, toms_room↔pose1, toms_room↔pose2,
toms_room↔pose5, toms_room↔bed2, toms_room↔wardrobe2, jacks_room↔pose2, jacks_room↔pose3,
kitchen↔pose3, kitchen↔pose4, kitchen↔pose5, kitchen↔fridge, kitchen↔coffee_machine,
livingroom↔pose4, wardrobe1↔coffee_mug]}
Memory: [toms_room, kitchen, jacks_room, bobs_room]
SayPlan [Mode->Planning]: chain-of-thought: "i have found the coffee mug, the coffee machine and
tom’s wardrobe on the graph -> search complete -> I will switch to planning mode-> collect coffee mug
-> generate plan for making coffee -> place coffee mug on Tom’s wardrobe"
reasoning: I will generate a task plan using the identified subgraph
plan: [goto(bobs_room) > access(wardrobe1) > pickup(coffee_mug) > goto(kitchen) >
access(coffee_machine) > release(coffee_mug) > turn_on(coffee_machine) > turn_off(coffee_machine)
> pickup(coffee_mug) > goto(toms_room) > access(wardrobe2) > release(coffee_mug) > done]
Path Planner:plan: [goto(pose3) > goto(pose4) > goto(pose1) > goto(bobs_room) > access(wardrobe1)
> pickup(coffee_mug) > goto(pose2) > goto(pose5) > goto(kitchen) > access(coffee_machine) >
release(coffee_mug) > turn_on(coffee_machine) > turn_off(coffee_machine) > pickup(coffee_mug) >
goto(pose5) > goto(pose2) > goto(toms_room) > access(wardrobe2) > release(coffee_mug) > done]
Scene Graph Simulator: "coffee mug is not accessible"
Memory: [toms_room, kitchen, jacks_room, bobs_room]
SayPlan [Mode->Planning]: chain-of-thought: "the coffee mug was not accessible -> the wardrobe it
is in is currently closed -> I update the plan to open the wardrobe first -> generate plan for making
coffee -> place coffee mug on Tom’s wardrobe"
reasoning: I will generate a task plan using the identified subgraph and the feedback from the
simulator
plan: [goto(bobs_room) > access(wardrobe1) > open(wardrobe1) > pickup(coffee_mug) > goto(kitchen) >
access(coffee_machine) > release(coffee_mug) > turn_on(coffee_machine) > turn_off(coffee_machine)
> pickup(coffee_mug) > goto(toms_room) > access(wardrobe2) > release(coffee_mug) > done]
Path Planner:plan: [goto(pose3) > goto(pose4) > goto(pose1) > goto(bobs_room) > access(wardrobe1)
> open(wardrobe1) > pickup(coffee_mug) > goto(pose2) > goto(pose5) > goto(kitchen) >
access(coffee_machine) > release(coffee_mug) > turn_on(coffee_machine) > turn_off(coffee_machine)
> pickup(coffee_mug) > goto(pose5) > goto(pose2) > goto(toms_room) > access(wardrobe2) >
release(coffee_mug) > done]
Scene Graph Simulator: Plan Verified
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