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Abstract—Recovering full 3D shapes from partial observations
is a challenging task that has been extensively addressed in the
computer vision community. Many deep learning methods tackle
this problem by training 3D shape generation networks to learn a
prior over the full 3D shapes. In this training regime, the methods
expect the inputs to be in a fixed canonical form, without which
they fail to learn a valid prior over the 3D shapes. We propose
SCARP, a model that performs Shape Completion in ARbitrary
Poses. Given a partial pointcloud of an object, SCARP learns a
disentangled feature representation of pose and shape by relying
on rotationally equivariant pose features and geometric shape
features trained using a multi-tasking objective. Unlike existing
methods that depend on an external canonicalization method,
SCARP performs canonicalization, pose estimation, and shape
completion in a single network, improving the performance by
45% over the existing baselines. In this work, we use SCARP for
improving grasp proposals on tabletop objects. By completing
partial tabletop objects directly in their observed poses, SCARP
enables a SOTA grasp proposal network improve their proposals
by 71.2% on partial shapes.

I. INTRODUCTION

Given a partial observation of an object, 3D shape comple-
tion aims to recover the full 3D shape of the object. This has
been widely addressed in computer vision [26, 11, 8, 13, 18,
31, 27, 2] and has many diverse downstream applications in
robotics including visual servoing [6], manipulation [5, 1, 9,
21], visual inspection [12], autonomous driving [3, 29, 22].

Many existing methods tackle shape completion by incor-
porating a training scheme that learns a prior over the full 3D
shapes. This is done by training an autoencoder [24, 28, 26, 31]
or a GAN [30] over many different instances of full shapes.
At inference, this learned prior space is conditionally queried
on the partial observations. These methods however, suffer
from a major limitation: they expect the partial input to be in
a fixed canonical frame–a common frame of reference that is
shared between instances in that category [23, 16]. A particular
shape X in two different poses {R1, T1} and {R2, T2} will
have very different geometry. As a result, X in different poses
appear as novel instances for these methods inhibiting them
from learning a valid prior over shapes.

Existing datasets like ShapeNet [4] have shapes that are
manually aligned to a canonical frame, but real shape obser-
vations (e.g., depth maps) do not contain this information.

A naive approach to tackling this challenge is to canonical-
ize, i.e., map a 3D (full or partial) shape to a category-level

canonical frame with [23] or without supervision [16, 20, 19].
A multi-stage pipeline can be built involving the sequential

steps of (1) canonicalization, (2) shape completion, and (3)
de-canonicalization (bringing the object back in the original
pose). In such a pipeline however, the performance of a
shape completion network directly depends on the output
quality of the canonicalization module. This can lead to errors
propagating between these modules leading to a sub-optimal
completion.

We propose SCARP, a method that performs Shape
Completion in ARbitrary Poses. Unlike existing methods that
have to directly learn a prior over all possible poses and
shapes, we first disentangle the pose from the shape of a partial
pointcloud. We build a multi-task objective that: (1) generates
a disentangled feature representation of pose and shape by
canonicalizing an object to a fixed frame of reference, (2)
estimates the exact pose of the object, and (3) completes the
shape of the object using the disentangled representation. This
multi-task objective allows our network to jointly understand
the pose and shape of the input.

It does so by learning rotationally-equivariant and
translationally-invariant pose features using Tensor Field Net-
works [14], and global geometric shape features using Point-
Net++ [15].

Application: Robotic grasp pose estimation [21, 9, 7, 10]
is a challenging area of research that often expects a faithful
reconstruction of the scene in 3D.

Under a partial observation, [21] generates grasp proposals
that directly collide with the actual object in the scene (shown
in red). As a result, the manipulator is likely to collide with
the object as it attempts to grasp the objects using one of
these predicted grasp poses. We use SCARP to complete these
partial shapes directly in their observed poses and estimate
grasp proposals on these completed shapes. We show that
SCARP reduces such invalid grasps by 71.2% over predicting
grasp poses directly on the partial observations.

To summarize, our contributions are:
1) We propose SCARP, a novel architecture to perform

shape completion from partial pointclouds in arbitrary
poses.

2) We show for the first time how a multi-task objective can
support: (1) canonicalization, (2) 6D pose estimation,
and (3) shape completion on partial pointclouds.



3) We demonstrate that SCARP outperforms the existing
shape completion baselines (with pre-canonicalization)
by 45% and improves grasp pose estimation by reducing
invalid grasp poses by 71%.

II. METHOD

Given a partial object pointcloud X̂p at an unknown pose
{R, T}, we want to estimate this pose and the corresponding
full object pointcloud X̂ in the same pose.

This is a challenging task as for a neural network, a
pointcloud X in two different poses {R1, T1} and {R2, T2} are
two completely different pointclouds. Thus, we adopt a multi-
tasking objective that disentangles the pose and the shape of
the input partial pointcloud X̂p. The shape component allows
us to understand that X̂p is a partial observation of X which
is X̂ in its canonical form. The pose component is then used
to estimate the pose transform {R, T} between X̂ and X .

A. Multi-tasking Pipeline for disentangling Shape and Pose

Let Xp and X be a partial and its corresponding full
pointcloud in a fixed canonical frame. Then X̂p and X̂ are
Xp and X in an unknown arbitrary pose {R, T} such that
X̂p = R(Xp) + T and X̂ = R(X) + T . The input to our
network is X̂p which is mean centered at the origin and
normalized to a unit bounding box. Our aim is to predict
{R, T} and the full pointcloud X̂ which is posed as:

{R, T, X̂} = Φ(X̂p) (1)

where Φ denotes our proposed network, SCARP.
Our multi-tasking objective is formulated to (1) complete

the partial pointcloud in a fixed canonical frame given by X
and (2) estimate the pose transformation from the canonical
frame to the original pose {R, T}. In this pipeline, the two
components (1) pose and (2) shape are predicted separately
using two different output heads as shown in Fig. 1.

1) Feature Extraction: To estimate the input’s shape, we
compute global geometric shape features, p ∈ RE , using
Pointnet++ [15] To estimate the pose of the input, we adapt
TFN [14]. Our TFN computes a global equivariant feature,
F ∈ RN×E by max pooling over the types {ℓ}ℓ=ℓmax

ℓ=0 , where
E is the dimension of the equivariant embeddings, N and
ℓmax are user-defined.

The input to our shape completion network is a non-linear
combination of p and a global invariant embedding, FX ∈ RE ,
computed by max pooling F over the channel dimension, N .
Additionally, F is used to estimate an equivariant frame of
reference, {R′ ∈ R3×3, T ′ ∈ R3} that transforms the invariant
embeddings to X’s original pose.

2) Task I: Shape Completion: Completing the shape of a
partial input at any arbitrary orientation is difficult. Therefore,
we aim to first complete the shape at a fixed canonical
frame. To learn this canonical frame, the model needs to build
an understanding of the full shape of the partial input. To
achieve this, we train our model to predict a full canonicalized
pointcloud X ′ ∈ R1024×3 directly from X̂p ∈ R512×3. Shape
completion enables our model to learn a prior over the global

shape of a category (a typical chair would have four legs and
a backrest) enabling our network to directly canonicalize the
partial inputs accurately.

We adopt our generator G, from [17], as our shape com-
pletion network where (1) the input to G is a semantically
meaningful embedding generated from a partial input X̂p and
(2) is trained using a distance loss against the full pointcloud
X to learn a relationship between the partial input X̂p and
the predicted full canonical pointcloud X ′. As shown in
Fig. 1 (right), the input to G is a globally invariant feature
vector f ∈ RE computed by combining p = P (X̂p) and
FX = X (X̂p) non-linearly using a neural network ϕS given
as:

X ′ = G(f) and f = ϕS(X (X̂p)⊕ P (X̂p))) (2)

3) Task II: Pose Estimation: Once G predicts the full
pointcloud X ′ in a canonical pose, it is important to estimate
the correct rotation SO(3) matrix R ∈ R3×3 and translation
T ∈ R3 to register X ′ back on X̂p. We predict R′ and T ′ on
the second head of our model using the rotationally equivariant
TFN features F given as:

R′ = ϕR(F ) and T ′ = ϕT (F ) (3)

where ϕR and ϕT are multi-layered perceptrons.
4) Subsubsection Heading Here: Subsubsection text here.

B. Loss Functions for Multitask Training

1) Shape Completion in a fixed Canonical Frame: In the
first task, we estimate the completed pointcloud in a fixed
canonical frame given by X ′. We use DCD [25] to minimize
the distance between the predicted pointcloud X ′ and the
ground truth canonical pointcloud X given by:

Lshape = dDCD(X ′, X) (4)

2) Estimating the pose of the object: To estimate the pose
given by {R, T}, we use rotationally equivariant pose features
F and pass it through {ϕR, ϕT }. We constrain this prediction
against the canonical frame. To do so, we rotate the canonical
output X ′ to obtain R′(X ′) and compare it against the
rotated ground truth X̂ . At this point however, the pointwise
correspondences between X and X ′ are lost. Thus, a hard
distance loss such as Euclidean distance cannot be directly
used. To tackle this, we minimize permutation invariant CD 1

objective between X and X ′. However, CD only minimizes
the distance between the nearest neighbors of the points in
the pointcloud. This results in local minimas where the loss is
minimal even when the actual correspondences are far. As a
result, the predicted pointcloud is often flipped about one of
the axes. To tackle this issue, we rotate the canonical ground
truth X using the predicted R′ and compare against X̂ using
L2 loss. The overall loss is:

Lrot = δdCD(X̂, R′(X ′)) + γ||X̂, R′(X)||2 (5)

1https://pdal.io/en/latest/apps/chamfer.html

https://pdal.io/en/latest/apps/chamfer.html
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Fig. 1. Overview of our proposed approach: The input to SCARP is a mean-centered partial pointcloud X̂p in an arbitrary orientation
R. Our feature extraction module (b) disentangles the partial pointcloud’s pose and shape and is trained in a multi-tasking objective (a). In
the first task, SCARP combines Pointnet++ [15] and TFN [14] features to generate a shape feature that is used by a pointcloud completion
network, G, to generate X ′. In the second task, the TFN pose feature is used to generate an equivariant frame {R′, T ′}. Our loss functions
enable the overall network to learn a prior over the shape while understanding the pose of the partial input.

Fig. 2. Qualitative comparison of shape completion in arbitrary poses on SCARP and the existing multi-stage baselines: Canonicalization using
ConDor, Shape Completion, and De-canonicalization. Pointr[27] is a SOTA pointcloud completion network that generates high-resolution
completed pointclouds. Shape Inversion (SInv.) [30] is based on tree-GAN [17] that shares our generator G.

R′(X ′) is computed by detaching the forward computation
graph at the output of G. The gradients from the loss does not
backpropogate through G at the first head.

For symmetrical objects such as bowls and glasses, multiple
R′ predictions can be correct. A hard L2 loss penalizes the
network for correct predictions even for correct R′ if the
correspondences do not exactly match. Thus, for symmetrical
objects, we keep δ ∼ 1.0 and γ ∼ 0.0 and for non-symmetrical
objects we keep δ ∼ 1.0 and γ ∼ 1.0.

The input to our network is a mean-centered partial point-
cloud X̂p. At this point, we train our network to regress to
X̂p’s centroid in the full pointcloud X given by T ′. We directly
supervise T ′ against the ground truth T given as:

Ltrans = ||T ′ − T ||2 (6)

The final output is obtained by rotating and translating our

predicted pointcloud X ′ by R′ and T ′ respectively as:

Xo = R′(X ′) + T ′ (7)

Orthonormality Loss: The rotation R′ predicted by our
network is a 3 × 3 matrix in the SO(3) space. However, the
matrix predicted by Eqn. 3 is not guaranteed to be a valid
SO(3) matrix. We therefore, enforce orthonormality on R′ by
minimizing its difference to its closest orthonormal matrix. To
do so, we compute the SVD decomposition of R = UΣV T

and enforce unit eigenvalues as:

Lorth = ||UV T −R||2 (8)

3) Combined Loss: We train our network end-to-end by
combining all the losses as:

L = Lshape + Lrot + Ltrans + Lorth (9)



Tabletop Off-Table
Bowl Bottle Can Mug Basket Plane Car Chair Watercraft Average

CD↓
ConDor+SInv. 82.7 27.4 45.4 41.5 85.3 34.2 14.7 59.4 39.9 47.8

ConDor+Pointr 30.8 20.9 29.9 14.2 40.9 22.1 6.4 19.8 8.5 21.5
SCARP (Ours) 21.8 7.9 11.8 12.1 34.2 6.9 5.6 19.1 7.1 14.0

MMD-EMD↓

Bowl Bottle Can Mug Basket Plane Car Chair Watercraft Average
ConDor+SInv. 27.3 17.2 20.1 19.9 29.2 19.6 11.3 22.2 18.9 20.6

ConDor+Pointr 21.6 13.6 14.8 12.6 18.8 14.4 8.1 13.5 9.1 14.1
SCARP (Ours) 9.6 6.3 8.8 8.4 10.6 5.0 5.6 8.4 6.0 7.6

TABLE I
QUANTITATIVE COMPARISON OF SHAPE COMPLETION IN ARBITRARY POSES FOR TABLETOP AND OFF-TABLETOP OBJECTS. MOST

TABLETOP OBJECTS ARE SYMMETRICAL WHEREAS OFF-TABLE OBJECTS HAVE MORE VARIATIONS IN STRUCTURE. CHAMFER’S
DISTANCE (CD) AND EARTH MOVERS DISTANCE-MAXIMUM MEAN DISCREPANCY (MMD-EMD) ARE SCALED BY 103 AND 102 .

III. RESULTS

Dataset: Our dataset is a subset of [4] derived from [16]
and [27] made of 5 tabletop (Bowl, Bottle, Can, Mug, Basket)
and 4 non-tabletop (Plane, Car, Chair, Watercraft) categories.

Results: As shown in Table I, SCARP outperforms the
existing multi-stage baselines on all the categories on an
average by 45%. The existing shape completion methods rely
on the output of an external canonicalization model that suffer
from their own inconsistencies as reported in their paper [16].
This results in an error propagation as the input to the shape
completion networks are not always in the exact canonical
forms. The errors in the input map to a larger error in the
output of the networks. This is followed by an error in the
transform from the canonical form to the original pose. The
resulting output of the multi-stage pipeline suffer from high
inconsitensies and sub-optimal outputs.

Unlike these networks, our model is trained jointly on both
tasks (canonicalization and shape-completion) using a multi-
tasking objective. As we show in the ablations, this objective
plays a crucial role in achieving a disentangled representation
of shape and pose.

Qualitative results are shown in Fig. 2 that vividly show
the closeness of SCARP’s output to the ground truth when
compared with others.

Improvement in Grasp Proposals: Generating grasp propos-
als for partial pointclouds is a challenging task as a network
may mistake a missing portion of an object as a potential area
to grasp (see Fig. 3). We apply SCARP to complete these
partial observations directly in the observed poses and predict
grasp poses on these completed pointclouds using a SOTA
grasp generation network Contact-Graspnet [21]. Qualitative
results are shown in Fig. 3.

As can be seen, the grasps proposed on partial observations
collide with the actual object (ground truth), whereas, the grasp
proposals made on the completed object by SCARP are valid.

IV. CONCLUSION

Existing shape completion works assume the partial inputs
to be in a fixed canonical frame. This is difficult to achieve in
a robotics setting where the objects are observed in arbitrary
poses thus needing pre-canonicalization. This leads to an error
propagation resulting in a sub-optimal shape completion. We
propose SCARP, a novel architecture that performs Shape

Fig. 3. (left): Grasp proposals made by a SOTA grasp proposal
network, [21], on partial observations lead to collisions with the actual
object. Partial is a partial observation and Ground truth denotes the
actual object. The proposals are made on Partial (shown in green)
but collide with the actual object (shown in red). (right): We use
SCARP to complete the partial observations. Grasp proposals made
on the completed objects align well with the actual object on the
table reducing such collisions by a large margin.

Completion in ARbitrary Poses. SCARP is trained using a
multi-task objective to perform (1) canonicalization, (2) 6D
pose estimation, and (3) shape completion. SCARP outper-
forms the existing multi-stage baselines by 45% and showcases
its potential in improving grasp proposals on tabletop objects,
reducing colliding grasps by more than 70%. SCARP has a
huge potential in many more robotics applications like colli-
sion avoidance in trajectory planning or differential simulators
for model-based RL planners.
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