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Abstract—The release of nuPlan marks a new era in vehicle
motion planning research, offering the first large-scale real-world
dataset and evaluation schemes requiring both precise short-
term planning and long-horizon ego-forecasting. Existing systems
struggle to simultaneously meet both requirements. Indeed, we
find that these tasks are fundamentally misaligned and should
be addressed independently. We further assess the current state
of closed-loop planning in the field, revealing the limitations of
learning-based methods in complex real-world scenarios and the
value of simple rule-based priors such as centerline selection
through lane graph search algorithms. More surprisingly, for the
open-loop sub-task, we observe that the best results are achieved
when using only this centerline as scene context (i.e., ignoring all
information regarding the map and other agents). Combining these
insights, we propose an extremely simple and efficient planner
which outperforms an extensive set of competitors, winning the
nuPlan planning challenge 2023.

I. INTRODUCTION

Despite learning-based systems’ success in vehicle motion
planning research [9, 10, 26, 33, 7], a lack of standardized
large-scale datasets for benchmarking holds back their transfer
from research to applications [4, 19, 2]. The recent release
of the nuPlan dataset and simulator [5], a collection of 1300
hours of real-world vehicle motion data, has changed this,
enabling the development of a new generation of learned
motion planners, which promise reduced manual design effort
and improved scalability. Equipped with this new benchmark,
we perform the first rigorous empirical analysis on a large-
scale, open-source, and data-driven simulator for vehicle motion
planning, including a comprehensive set of state-of-the-art
(SoTA) planners [28, 25, 16] using the official metrics. Our
analysis yields several surprising findings:

Open- and closed-loop evaluation are misaligned. Most
learned planners are trained through the supervised learning
task of forecasting the ego vehicle’s future motion conditioned
on a given goal location. We refer to this setting as ego-
forecasting [10, 26, 23, 6]. In nuPlan, planners can be evaluated
in two ways: by directly measuring ego-forecasting accuracy
using distance-based metrics in an open-loop evaluation or by
assessing driving-relevant closed-loop metrics such as progress
and collision rates in a simulated setting, termed closed-loop
evaluation. Our primary contribution lies in uncovering the
performance trade-off between the open-loop and closed-loop
evaluation schemes. While previous work on the simplistic
CARLA simulator [14] has shown that open- and closed-loop
evaluation can have little correlation [8], our results indicate a

negative correlation exists when using nuPlan’s metrics.

Rule-based planning generalizes. We surprisingly find that
an established rule-based planning baseline from over twenty
years ago [31] surpasses all SoTA learning-based methods in
terms of closed-loop evaluation metrics on our benchmark.
This contradicts the prevalent motivating claim used in most
research on learned planners that rule-based planning faces
difficulties in generalization. This was previously only verified
on simpler benchmarks [33, 28, 25]. As a result, most current
work on learned planning only compares to other learned
methods, ignoring rule-based baselines [26, 7, 17].

A centerline is all you need for ego-forecasting. We
implement a naïve learned planning baseline which does not
incorporate any input about other agents in the scene and
merely extrapolates the ego state conditioned on a centerline
representation of the desired route. This baseline sets the
new SoTA for open-loop evaluation on our benchmark. It
does not require intricate scene representations (e.g. lane
graphs, vectorized maps, rasterized maps, tokenized objects),
which have been the central subject of inquiry in previous
work [28, 25, 16]. None of these prior studies considered a
simple centerline-only representation as a baseline, perhaps
due to its extraordinary simplicity.

Long-horizon prediction adds little value. Using the insights
gained, we propose novel rule-based and learned planners that
achieve SoTA results on the open- and closed-loop evaluation
metrics, respectively. We maintain simple input representations
so that both of these planners demonstrate significant efficiency.
Finally, we introduce a corrective strategy that involves predict-
ing learned offsets to a rule-based plan resulting in a hybrid
planner. While this hybrid planning strategy significantly boosts
performance in open-loop evaluation compared to the closed-
loop planner, we find that it yields no added benefits for closed-
loop evaluation due to the incorporated learned component.
This outcome suggests that accurate long-horizon prediction,
often considered crucial in complex planning scenarios [27, 11],
offers little to no additional value for closed-loop planning.

A preliminary version of our approach won the inaugural
nuPlan challenge. Given its simplicity, it provides a robust
starting point for future motion planning research on nuPlan.

II. EGO-FORECASTING AND PLANNING ARE MISALIGNED

In this section, we provide the relevant background
regarding the data-driven simulator nuPlan [5]. We then
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describe two baselines used in a preliminary experiment to
demonstrate that although ego-forecasting and planning are
often considered related tasks, they are not well-aligned given
their definitions on nuPlan. Improvements in one task can
often lead to degradation in the other.
nuPlan. Simulators like nuPlan enable rapid prototyping
and testing of motion planners, facilitating swift iteration of
ideas. nuPlan constructs a simulated environment as closely
as possible to a real-world driving setting through data-
driven simulation [1, 3, 29, 35, 32, 34, 15]. This method
extracts road maps, traffic patterns, and object properties
(positions, orientations, and speeds) from a pre-recorded dataset
consisting of 1,300 hours of real-world driving. These elements
are then used to initialize scenarios, which are 15-second
simulations employed to assess open-loop and closed-loop
driving performance. In the open-loop simulation, the entire
log is merely replayed (for both the ego vehicle and other
actors). Conversely, in closed-loop simulation, the ego vehicle
operates under the control of the planner being tested. There
are two versions of closed-loop simulation: non-reactive, where
all other actors are replayed along their original trajectory, and
reactive, where other vehicles employ an IDM planner [31],
which we describe in more detail in the following.
Metrics. nuPlan offers three official evaluation metrics: open-
loop score (OLS), closed-loop score non-reactive (CLS-NR),
and closed-loop score reactive (CLS-R). Although CLS-NR
and CLS-R are computed identically, they differ in background
traffic behavior. Each score is a weighted combination of estab-
lished metrics, scaled within a range of 0-100. A high open-loop
score necessitates low displacement and heading errors between
the planner’s and recorded trajectories over an extended
period (8 seconds). The closed-loop score mandates that the
generated plan remains on the road, adheres to the traffic’s
direction, avoids collisions where the planner is at fault, makes
progress, maintains comfort, and observes the speed limit, all of
which rely on an accurate short-term trajectory. For additional
information on the metrics’ composition, please refer to [20].
Intelligent Driver Model. The simple planning baseline
IDM [31] serves not only as the mechanism for simulating
other actors in the CLS-R evaluation within nuPlan, but also
as a baseline for the ego-vehicle’s planning. The nuPlan map
is provided as a graph, with centerline segments functioning
as nodes. After choosing a set of such nodes to follow via a
graph search algorithm, IDM infers a longitudinal trajectory
along the selected centerline. Given the current longitudinal
position x, velocity v, and distance to the leading vehicle s
along the centerline, it iteratively applies the following policy
to calculate a longitudinal acceleration:

dv

dt
= a

(
1−

(
v

v0

)δ

−
(
s∗

s

)2
)
. (1)

The acceleration limit a, target speed v0, safety margin s∗, and
exponent δ are manually selected. Intuitively, the policy uses
an acceleration a unless the velocity is already close to v0 or
the leading vehicle is at a distance of only s∗.

Centerline-conditioned ego-forecasting. We now propose
the Predictive Driver Model (Open), i.e., PDM-Open, which
is a straightforward multi-layer perceptron (MLP) designed
to predict future trajectories. The inputs to this MLP are the
centerline (c) extracted by IDM and the ego history (h). To
accommodate the high speeds (reaching up to 15 m/s) and
ego-forecasting horizons (extending to 8 seconds) observed
in nuPlan, the centerline is sampled with a resolution of 1
meter up to a length of 120 meters. Meanwhile, the ego history
incorporates the positions, velocities, and accelerations of the
vehicle over the previous two seconds, sampled at a rate of
5Hz. Both c and h are linearly projected to feature vectors of
size 512, concatenated, and input to the MLP ϕOpen which has
two 512-dimensional hidden layers. The output is the future
waypoints for an 8-second horizon, spaced 0.5 seconds apart,
expressed as wOpen = ϕOpen(c,h). The model is trained using
an L1 loss on our training dataset of 177k samples (elaborated
upon in Section III). By design, PDM-Open is considerably
simpler than existing learned planners [28, 16].
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IDM [31] a = 1.0
✓ - 77 76 38

a = 0.1 54 66 48

PDM-Open

- - 51 50 69
- ✓ 38 34 72
✓ - 54 53 85
✓ ✓ 54 50 86

TABLE I: OLS-CLS Tradeoff. Base-
line scores on nuPlan.

OLS vs. CLS.
In Table I, we
benchmark the IDM
and PDM-Open
baselines using
the nuPlan metrics.
We present two
IDM variants with
different maximum
acceleration values
(the default
a = 1.0ms−2

and a = 0.1ms−2) and four PDM-Open variants based
on witholding different inputs. While IDM demonstrates
strong closed-loop performance, PDM-Open excels in
open-loop. Reducing IDM’s acceleration improves OLS but
negatively impacts CLS. For PDM-Open, adding the centerline
significantly contributes to ego-forecasting performance, with
minor enhancements when adding a 2-second state history.
However, including the ego-history leads to a drop in CLS. A
clear trade-off between CLS and OLS indicates a misalignment
between the goals of ego-forecasting and planning. This sort
of inverse correlation on nuPlan is unanticipated, considering
the increasing use of ego-forecasting in current planning
literature [26, 28, 16, 25].

Improving closed-loop driving. We now extend IDM by
incorporating several concepts from model predictive control,
including forecasting, proposals, simulation, scoring, and
selection, as illustrated in Fig. 1 (top). We call this model
PDM-Closed. Note that as a first step, we still require a
graph search to find a sequence of lanes along the route and
extract their centerline, as in the IDM planner.

Forecasting. In nuPlan, the simulator provides an orientation
vector and speed for each dynamic agent such as a vehicle
or pedestrian. By linearly extrapolating these values, we can
approximate the future positions of the agents up to the
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Fig. 1: Architecture. PDM-Closed selects a centerline, forecasts the environment, and creates varying trajectory proposals,
which are simulated and scored for trajectory selection. The PDM-Hybrid module predicts offsets using the PDM-Closed
centerline, trajectory, and ego history, correcting only long-term waypoints and thereby limiting the learned model’s influence
in closed-loop simulation.

forecasting horizon F of 8 seconds at 10Hz.

Proposals. In the process of calibrating the IDM planner, we
observed a trade-off when selecting a single value for the target
speed hyperparameter (v0), which either yielded aggressive
driving behavior or insufficient progress across various scenar-
ios. Consequently, we generate a set of trajectory proposals by
implementing IDM policies at five distinct target speeds, namely,
{20%, 40%, 60%, 80%, 100%} of the designated speed limit.
For each target speed, we also incorporate proposals with three
lateral centerline offsets (±1m and 0m), thereby producing
N = 15 proposals in total. To circumvent computational
demands in subsequent stages, the proposals have a reduced
horizon of H steps, which corresponds to 4 seconds at a 10Hz.

Simulation. Trajectories in nuPlan are simulated by iteratively
retrieving actions from a LQR controller [30] and propagating
the ego vehicle with a kinematic bicycle model [24, 22]. We
simulate the proposals with the same parameters and a faster
re-implementation of this pipeline. Thereby, the proposals are
evaluated based on the expected movement in closed-loop.

Scoring. Each simulated proposal is scored to favor traffic-rule
compliance, progress, and comfort. By considering proposals
with lateral and longitudinal variety, the planner can avoid
collisions with agent forecasts and correct drift that may
arise when the controller fails to accurately track the intended

trajectory. Furthermore, our scoring function closely resembles
the nuPlan evaluation metrics.
Trajectory selection. Finally, PDM-Closed selects the
highest-scoring proposal which is extended to the complete
forecasting horizon F with the corresponding IDM policy. If
the best trajectory is expected to collide within 2 seconds, the
output is overwritten with an emergency brake maneuver.
Enhancing long-horizon accuracy. To integrate the accurate
ego-forecasting capabilities of PDM-Open with the precise
short-term actions of PDM-Closed, we now propose a
hybrid version of PDM, i.e., PDM-Hybrid. Specifically,
PDM-Hybrid uses a learned module PDM-Offset to
predict offsets to waypoints from PDM-Closed, as shown
in Fig. 1 (bottom).

In practice, the LQR controller used in nuPlan relies
exclusively on the first 2 seconds of the trajectory when
determining actions in closed-loop. Therefore, applying the
correction only to long-term waypoints (i.e., beyond 2 seconds
by default, which we refer to as the correction horizon
C) allows PDM-Hybrid to maintain closed-loop planning
performance. The final planner output waypoints (up to the
forecasting horizon F ) {wt

Hybrid}Ft=0 are given by:

wt
Hybrid = wt

Closed + 1[t>C]ϕ
t
Offset(wClosed, c,h). (2)

Where c and h are the centerline and history (identical to the
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Urban Driver [28] Polygon 44 45 76 64
GC-PGP [16] Graph 54 57 82 100
PlanCNN [25] Raster 72 73 64 43
IDM [31] Centerline 77 76 38 27
PDM-Open Centerline 54 50 86 7
PDM-Closed Centerline 92 93 44 91
PDM-Hybrid Centerline 92 93 84 96
PDM-Hybrid* Graph 92 93 84 172

Log Replay GT 80 94 100 -

TABLE II: Val14 benchmark. We show the closed-loop score
reactive/non-reactive (CLS-R/CLS-NR), open loop score (OLS)
and runtime in ms for several planners. We specify the input
representation (Rep.) used by each planner. PDM-Hybrid
accomplishes strong ego-forecasting (OLS) and planning (CLS).
*This is a preliminary version of PDM-Hybrid that combined
PDM-Closed with GC-PGP [16], and was used in our online
leaderboard submission (Table III)

inputs of PDM-Open). {wt
Closed}Ft=0 are the PDM-Closed

waypoints added to the hybrid approach, and ϕOffset is an MLP.
Its architecture is identical to ϕOpen except for an extra linear
projection to accommodate wClosed as an additional input.

It is important to note that PDM-Hybrid is designed
with high modularity, enabling the substitution of individual
components with alternative options when diverse requirements
emerge. Given its overall simplicity, one interesting approach
to explore involves incorporating modular yet differentiable
algorithms as components, as seen in [18]. Exploring the inte-
gration of these modules within unified multi-task architectures
is another interesting direction. We reserve such exploration
for future work.

III. EXPERIMENTS

We now outline our proposed benchmark and highlight the
driving performance of our approach.

Val14 benchmark. We offer standardized data splits for
training and evaluation. Training uses all 70 scenario types
from nuPlan, restricted to a maximum of 4k scenarios per
type, resulting in ∼177k training scenarios. For evaluation, we
use 100 scenarios of the 14 scenario types considered by the
leaderboard, totaling 1,118 scenarios. Despite minor imbalance
(all 14 types do not have 100 available scenarios), our validation
split aligns with the online leaderboard evaluation (Table II and
Table III), confirming the suitability of our Val14 benchmark
as a proxy for the online test set.

Baselines. We include several additional SoTA approaches
adopting ego-forecasting for planning in our study. Urban
Driver [28] encodes polygons with PointNet layers and pre-
dicts trajectories with a linear layer after a multi-head attention
block. GC-PGP [16] clusters trajectory proposals based on
route-constrained lane-graph traversals before returning the
most likely cluster center. PlanCNN [25] predicts waypoints

using CNN from rasterized grid features without ego-state input.
It shares several similarities to ChauffeurNet [2], a seminal
work in the field. A preliminary version of PDM-Hybrid,
which won the nuPlan competition, used GC-PGP as its ego-
forecasting component, and we include this as a baseline.
Results. Our results are presented in Table II. Intriguingly,
PlanCNN achieves the best CLS among learned planners,
possibly due to its design choice of removing ego state from
input, trading OLS for enhanced CLS. Contrary to the commu-
nity’s growing preference for graph- and vector-based scene
representations in prediction and planning [13, 25, 21, 12],
these results show no clear advantage in adopting these methods
for the closed-loop task, with the raster-based PlanCNN also
offering a lower runtime. Surprisingly, the simplest rule-based
approach in our study, IDM, outperforms the best learned
planner, PlanCNN. Moreover, we observe PDM-Closed’s
advantages over IDM in terms of CLS: an improvement from
76-77 to 92-93 as a result of the ideas from Section II.

Notably, the centerline representation serves as a highly valu-
able prior for achieving the SoTA OLS of 86 with PDM-Open
in a runtime of only 7ms. Next, despite PDM-Closed’s
unsatisfactory 44 OLS, PDM-Hybrid successfully combines
PDM-Closed with PDM-Open. Both the centerline and graph
versions of PDM-Hybrid achieve identical scores in our eval-
uation. However, the final centerline version, using PDM-Open
instead of GC-PGP, is more efficient during inference.

Finally, the privileged approach of outputting the ground-
truth ego future trajectory (log replay) fails to achieve a
perfect CLS, in part due to the nuPlan framework’s LQR
controller occasionally drifting from the provided trajectory.
PDM-Hybrid compensates for this by evaluating proposals
based on the expected controller outcome, causing it to
match/outperform log replay in closed-loop evaluation.
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PDM-Hybrid* 93 93 83 90
hoplan 89 88 85 87
pegasus_multi_path 82 85 88 85

Urban Driver [28] 68 70 86 75
IDM [31] 72 75 29 59

TABLE III: 2023 nuPlan Challenge.

Challenge. The
2023 nuPlan chal-
lenge saw the prelim-
inary (graph) version
of PDM-Hybrid
rank first out of 25
participating teams.
The leaderboard
considers the mean
of CLS-R, CLS-
NR, and OLS.
While open-loop performance lagged slightly, closed-loop
performance excelled, resulting in an overall SoTA score. Un-
fortunately, due to the closure of the leaderboard, our final (cen-
terline) version of PDM-Hybrid that replaces GC-PGP with
the simpler PDM-Open module could not be benchmarked.

IV. CONCLUSION

We identify prevalent misconceptions in learning-based
vehicle motion planning and provide evidence in our paper
that challenges these notions. We also introduce PDM-Hybrid
which surpasses a comprehensive set of competitors on nuPlan
and claimed victory in the 2023 nuPlan challenge.
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