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Abstract—Path planning is a basic capability of autonomous
mobile robots. Former approaches in path planning exploit only
the given geometric information without leveraging the inherent
semantics within the environment. The recently presented S-
Graphs construct optimizable 3D situational graphs incorporating
geometric, semantic, and relational aspects between the elements
to improve the overall scene understanding and the localization of
the robot. But these works do not exploit the underlying semantic
graph to improve the path planning for mobile robots. In this
direction, we present S-Nav a novel semantic-geometric path
planner for mobile robots. It leverages S-Graphs to enable fast
and robust hierarchical high-level planning in complex indoor
environments. The hierarchical architecture of S-Nav adds a
novel semantic search on top of a traditional geometric planner
as well as precise map reconstruction from S-Graphs to improve
planning speed, robustness, and path quality. We demonstrate
improved results of S-Nav in a synthetic environment.

I. INTRODUCTION

Mobile robots have gained a lot of traction in recent years
and have seen widespread use in different industries such as
construction, mining, etc., where they are used for autonomous
inspection tasks. To date, they are mostly teleoperated or
operated semi-autonomously under the supervision of a human
operator. Fully autonomous operation could thus significantly
reduce costs, however, several technical challenges such as
perception, navigation, mapping, and localization are currently
detrimental to this mode of operation. Mobile robots should
not only create meaningful maps of the environment while
localizing within it but also be able to exploit these maps to
perform fast and efficient planning.

Traditionally, mobile robots build a geometric map [4],
[5] of their environment using simultaneous localization and
mapping techniques (SLAM) in combination with their on-
board sensors [7] (e.g., LiDAR). Recently, we presented S-
Graphs a novel graph-based semantic SLAM that combines
traditional geometric SLAM with scene graphs [1], [2]. S-
Graphs extracts the topological-relational information of the
environment such as wall surfaces, rooms, and doorways
including the topological connections between those semantic
entities enabling the robot to reason about its environment
in a way humans would, and showed promising results in
terms of precise robot localization and high-level hierarchical
map generation over a variety of datasets. However, this scene
knowledge is not yet leveraged for performing more intelligent
and faster path planning for mobile robots

To bridge this gap, we leverage the metric, semantic, and
relational information in S-Graphs for the purpose of path

planning. We propose a novel hierarchical planner called S-
Nav which leverages the semantic layer to improve planning
on the geometric layer. First, we perform a semantic graph
search utilizing the semantic elements within the S-Graphs to
generate a sparse undirected graph of semantic elements such
as rooms and doorways. The undirected global semantic graph
is then divided into local subproblems which can be solved in
parallel and pose a set of simpler problems to the underlying
geometric planner. The main contributions of this work are:

• A novel hierarchical planner called S-Nav utilizing ge-
ometric, semantic, and relational information for faster
planning.

• A semantic planner for faster global plans.
• A semantic subproblem solver further simplifies the

global plan into local subproblems for the underlying
geometric planner.

II. SYSTEM OVERVIEW

Figure 1 shows an overview of S-Nav, the proposed nav-
igation system. The main blocks are the Semantic Planner
(section III-A, the Subproblem Solver (section III-B), and the
Geometric Planner (section III-D). The whole system builds
on top of S-Graphs, summarized in section II-A.

A. Situational Graphs (S-Graphs)

S-Graphs is an optimizable graph structure built using
online measurements such as LiDAR data or markers [1], [2],
[6].

The graph structure consists of five layers that are summa-
rized as:

Keyframe Layer: Composed by the robot’s pose MxRi
∈

SE(3) constrained by the robot’s odometry measurements.
Wall Layer: Each room is composed of four planes ex-

tracted from onboard sensor measurements. They are con-
strained using pose-plane constraints.

Room Layer: A room is formed by its four planes con-
strained by a cost function consisting of the room center
Myi ∈ R2 and the distance between the opposite planar pairs.

Floor Layer: A floor is a collection of rooms optimized
analogously to rooms by extracting the largest distance be-
tween the opposite planar pairs.

Doorway Layer: A doorway marks the physical, traversable
connection between two rooms defined by a center point
Mdi ∈ R2 and a width wi, and is constrained by the mutual
physical distance between the two rooms it connects.
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Fig. 1. Overview of S-Nav. A query (e.g., ’go from current position to the kitchen’) is first handled by the Semantic Planner which provides an initial
high-level semantic-geometric path based on the graph structure obtained from S-Graphs. Next, in the Subproblem Solver, the semantic-geometric path is
subdivided into smaller, easier problems that are individually solved by the Geometric Planner. The individual paths between the subproblems are then
reassembled into the final high-level path that is passed to the robot.

This work makes extensive use of the room, wall, and door-
way layers. The presented architecture can, however, easily be
expanded to include multiple floors and other semantic entities
(e.g., objects).

III. S-NAV

S-Nav is our novel hierarchical semantic-geometric planning
solution that combines S-Graphs with an informed geometric
planner. This provides the following benefits over traditional,
purely geometric planners:

• The geometric search can greatly profit from a rough
initial guess provided by the semantic layer by virtue
of constraining the areas the planner can visit and by
providing subgoals toward the final goal.

• A query in natural form, e.g., ’go from here to the
kitchen’, can easily be mapped to a semantic-geometric
problem.

• Handling forbidden areas such as closed doors or rooms
that should not be traversed is trivial on the semantic
layer, whereas it would require map changes on the
geometric layer. Similarly, if a doorway is detected as
untraversable, replanning is very fast as the doorways
node can easily be removed from the graph.

The structure of S-Nav is depicted in fig. 1. Its main parts
are formed by the Semantic Planner that cascades into the
Geometric Planner via the Subproblem Solver (SPS). The final
path is then passed to the robot, potentially via additional
layers such as local planning, trajectory generation, and motion
control.

A. Semantic Search

The scene graph structure of S-Graphs encodes a high-
level representation of the environment the robot is operating
in. Herein, this scene graph is converted into an undirected
graph connecting the semantic elements of the scene. The

connections (edges) between the elements have an associated
cost, i.e., for the room-to-doorway connections, a cost

cdr = ∥Myi − Mdi∥2 + pd (1)

is assigned, consisting of the distance between the center point
of the room and the associated doorway, plus a fixed penalty
for doorway crossing. The fixed penalty pd can be used to
prefer a slightly longer path with fewer (potentially closed)
doorways.

Generally, the graph is sparse, featuring only a small number
of nodes and edges. As such, a shortest-path search using, e.g.,
A* is virtually free compared to a full search on the geometric
layer.

To a given query ’ps → pg’, the semantic planner provides
a solution of type

ps → dk → dk+1 → · · · → dk+n → pg,

via: FR = Rs ∪Ri ∪ · · · ∪Rg, FR ⊂ R3,
(2)

where ps,pg , Rs, Rg are the start and goal positions and
rooms, d(.) the doorways to traverse along the route, and R(.)

are the rooms (free space) the robot has to pass through to
reach its destination. FR is the newly constructed restricted
state space passed to the geometric sampler. An example of
such a search is visualized in fig. 2.

B. Semantic Search with Subproblems

The global problem in eq. (2) can further be simplified into
a set of local subproblems that are solved in parallel and,
individually, pose a simpler problem to the geometric planner:

1 : ps → dk, via: Rs

2 : dk → dk+1, via: Ri+1

3 : dk+1 → dk+2, via: Ri+2

· · ·
n : dk+n → pg, via: Rg

(3)
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Fig. 2. The semantic-graph layer is an undirected topological graph of rooms
and doorways extracted from features segmented by S-Graphs. The result
of this first layer search cascades into the geometric layer which is formed
by OMPL and Voxblox. The contour layer formed from the extracted walls
reduces the valid state space of the geometric planner to do informed decisions
on where to sample. The semantic path is highlighted in green together with
the room contours that have to be traversed along the path.

Therefore, akin to informed geometric planners (e.g., in-
formed RRT* [3]), herein the semantic planner adds an
additional layer of information that the geometric planner can
profit from. The subproblems are solved by the Subproblem
Solver in conjunction with the geometric planner. The resulting
individual path segments are joined to a final, global path. If
the resulting path requires updating, e.g., due to a blocked
path, the Subproblem Solver can efficiently reevaluate the
changed or newly created subproblems.

C. Global Map

Instead of relying on raw sensor readings, S-Nav features
a global map reconstruction module that builds an accurate
global map from S-Graphs data, which in turn is generated
on the fly by the robot, resp. provided to the robot if the
environment is already fully mapped. The global map is kept
relatively simple, i.e., not featuring obstacles as this problem
is more effectively handled by the reactive planner on a local
map.

S-Graphs provides the planes associated with each room,
including the doorways that mark the connection between
two rooms. In the first step, for each room, the vertical
planes (walls) are converted to a closed 2D contour which
encompasses the free space within a room. Room contours
serve two purposes: First, to restrict the geometric planner’s
sampler to sample only in areas that effectively contribute to
the final path. Second, to build an optimistic, clutter-free (yet
accurate), signed distance field representation of the physical
environment that forms the basis for the geometric planner.
Similarly, doorways are added between the two closest walls
of the two associated rooms.

D. Geometric Search

The geometric search within S-Nav features state-of-the-art
geometric planners provided by the Open Motion Planning
Library (OMPL). Within S-Nav we use sampling-based plan-
ners (e.g., PRM, RRT), that create random (sometimes with a
heuristic) samples within the valid bounds of the state space. A

priori, for any given problem, the whole global map has to be
considered. Therefore, a large number of samples is required
to converge toward the optimal path. Constraining the sampler
to sample within the rooms that have to be visited along the
semantic path, greatly enhances the convergence rate of the
planner as no samples are wastefully created in areas that are
of no interest. Furthermore, using the SPS that decomposes
the global problem into a set of local problems effectively
exploits the rapid convergence of certain planning algorithms
(e.g., IRRT*) for the resulting simpler type of problems. The
problem is illustrated in fig. 3.

IV. EVALUATION

A. Methodology

A synthetic map (17m × 15m) with 8 rooms and 10
doorways was created and passed to the recently presented
iS-Graphs [6], an S-Graphs extension that supports archi-
tectural (BIM) data. Within this environment, the three
strategies (IRRT*, IRRT*+S-Graphs, and S-Nav: IRRT*+S-
Graphs+SPS) shown in fig. 3 were benchmarked by perform-
ing 1000 queries for each. As OMPL termination criteria, a
timeout of 0.1 s was specified. The timeout is equally divided
over all subproblems for the test series involving the SPS.
Recorded were the number of samples created within the al-
located time as well as the final path length. The measurements
were performed on a workstation equipped with an Intel Core
i9-11950H.

B. Results and Discussion

The results are given in fig. 4. It is clear that IRRT* alone
delivers the most inconsistent results with the widest spread.
On average, it also had the least number of samples generated.
Restricting the sampled regions with the S-Graphs knowledge,
significantly improved the consistency of the results. Further,
using S-Graphs and the SPS in combination with IRRT*
yielded consistently the shortest path, and was also able to
generate significantly more samples. The higher number of
samples is caused by the comparatively cheaper state and
motion validity checks based on the contours rather than the
signed distance field alone.

V. CONCLUSION

Leveraging the geometric-semantic knowledge contained in
S-Graphs for planning can greatly enhance the performance
of the underlying geometric planner. Herein, we presented
S-Nav, a novel semantic-geometric planner that features a
hierarchical planner architecture that showed to significantly
improve planning speed, resp., the consistency of the generated
paths within a given time frame. Furthermore, we showed that
decomposing the global problem into a set of local problems
can be used to effectively leverage the rapid convergence of
(informed) sampling-based planners.
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Fig. 3. a) The naı̈ve approach using IRRT* creates an excessive amount of samples and yet ends up with a suboptimal path. b) Restricting IRRT* to
sample within the rooms that are part of the optimal path greatly enhances the solution with fewer samples. c) Restricting IRRT* to sample within the rooms
parts of the solution and decomposing the overall problem in subproblems yields the best result (least amount of samples) as it effectively exploits the rapid
convergence of IRRT* for the resulting simpler problems.
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Fig. 4. Results: The semantic planner greatly improves the consistency of
the results by reliably finding the shorter path compared to plain IRRT*. The
S-Nav strategy involving IRRT*, S-Graphs, and the SPS created significantly
more samples in the allocated time and consistently found the shortest path.
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