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Abstract—Metric-semantic mapping is the key capability for
robots to improve the performance robustness as well as exe-
cute human instructions. This paper present an online metric-
semantic mapping system that utilize multi-modal sensing to
construct a lightweight metric-semantic mesh map around 10ms.
This fast performance is benefited from the GPU acceleration.
The resulting map is then integrated into a navigation sys-
tem, enabling the map-based localization and enhancing the
traversability extraction of ground. Real-world experiments are
done to validate the presented mapping and navigation system.

I. INTRODUCTION

As the basis of localization and navigation, mapping is of
growing importance in robotics. Mapping is the process to
build up an internal representation of environments which can
be operated by algorithms [11]. As the common type, metric
maps (also referred to as “geometric maps”) describe geometry
of a scene and are usually defined by positions of landmarks,
distance to obstacles, or binary values to indicate free and
occupied space, which are critical for robots to optimize a
smooth and collision-free trajectory. However, metric maps
have difficulty in maintaining the long-term consistency since
geometric features are sensitive to illumination and struc-
tural changes. Also, metric maps have limitation in encoding
human-readable information. It is inconvenient for robots to
execute abstract human instructions (e.g., “navigate to the
library” and “follow driving rules”)

Metric-semantic mapping [9] is the capability to group
semantic concepts into metric maps. The inclusion of human-
labeled information facilitates many tasks such as scene ab-
straction [9] and exploration [1]. In this paper, we focus on the
autonomous navigation task of ground robots in complicated
environments with abundant semantic elements. A typical
scenario is shown in Fig. 1, where many different objects
such as trees and buildings appear. It is also composed of the
sidewalk that is designed for pedestrains. By encoding human-
prior knowledge, the semantic map can guide the vehicle to
find a collision-free path along the road without intersecting
with the sidewalk and grassland. But it is commonly chal-
lenging for geometry-based traversability extraction methods
since the structures of roads, sidewalks, and grass are similar.
Therefore, in this paper, we will study the online metric-
semantic mapping method and explore its role in outdoor
navigation systems.

Building Road Sidewalk Grass Tree Pedestrian Others

Fig. 1. To successfully navigate in the unstructured environment or
conduct high-level or interactive tasks for a robot, semantic information that
categorizes surrounding objects at a human-readable format is required.

A. Challenges

We consider that a desirable metric-semantic mapping ap-
proach should fulfill the following requirements:

1) Accuracy: The approach needs to construct the map
that is close to real-world environments using onboard
sensor data. But the quality of construction is affected
by factors such as measurement noise, different view
angles, and insufficient observations.

2) Efficiency: Mapping is a typical time-consuming task
since thousands of map elements are queried and up-
dated for new measurements. It is particularly impor-
tant to guarantee the real-time performance for high-
resolution or large-scale mapping applications.

3) Versatility: The resulting metric-semantic map should
support a diverse array of functions, including but not
limited to localization, motion planning, and visualiza-
tion in a human-understandable format.

B. Contributions

Our first contribution is to propose an online mapping
system that uses LiDAR-visual-inertial sensing to estimate
the robot’s states and build a lightweight metric-semantic
mesh map of environments. Fig. 2 shows the architecture
of the mapping system. Building upon the NvBlox library1,
the mapping utilizes the signed distance field (SDF)-based

1https://github.com/nvidia-isaac/nvblox

https://github.com/nvidia-isaac/nvblox
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Fig. 2. The pipeline of the mapping and navigation system.

representation due to the advantage in constructing surfaces
with sub-voxel resolution. It consists of four modules.

1) State Estimator is a LiDAR-visual-inertial odometry
(LVIO) module implementing the EKF to simultane-
ously estimate real-time sensors’ poses with a local and
sparse color point cloud.

2) Semantic Segmentation is a pretrained convolutional
neural network that assigns a class label to every single
pixel of each input image.

3) Metric-Semantic Mapping takes sensors’ measure-
ments and poses as input, and constructs a global 3D
mesh of environments using the implicit SDF-based vol-
umetric representation with semantic annotations from
the 2D pixel-wise segmentation. It is implemented in
CUDAs and thus achieves the real-time performance.
The original projective distance calculation is improved
for more accuracy and complete (e.g., less holes) mesh
generation.

4) Traversability Analysis identifies drivable regions by
jointly analyzing geometric and semantic properties of
the resulting mesh map.

Our second contribution is to present an autonomous navi-
gation system that utilizes the resulting metric-semantic map
in localization and motion planning algorithms. We highlight
that the introduced semantic information encodes human in-
structions, guiding a mobile robot to safely navigate through
complex environments.

II. MAPPING

A. State Estimator
The state estimator implements LiDAR-visual-inertial

odometry (LVIO) that is presented in [6]. The LVIO consists of
the LIO subsystem and the VIO subsystem, estimating sensors’
poses and local maps in a coarse-to-find manner.

B. Semantic Segmentation
Confidence-aware semantic segmentation combined with

prototype learning is used, composed of a off-the-shelf seg-

mentation backbone [12] with a customized segmentation head
and a confidence head. Specifically, in the segmentation head,
each class is represented by a non-learnble prototype which is
updated by online clustering of the data points using Optimal
Transport [10]. Inspired by [7], to guide the network to pay
more attention to the areas where the predictions are uncertain,
the confidence head predicts pixel-wise aleatoric uncertainty
[5] using images, semantic predictions as inputs, supervised
by semantic ground truth. To train a neural network that has
promissing performance, we prepare 3000 images from the
public CityScapes urban dataset [2] and 1000 images from
the self-collected campus dataset.

C. TSDF-Based Volumetric Mapping

After obtaining the undistorted 3D scans (e.g., LiDARs,
RGB-D depth maps) and labeled images with associated poses,
our metric-semantic mapping module incrementally builds a
dense map for 3D reconstruction.

1) Measurement Preprocessing: This paper utilizes the
LiDAR as the range sensor due to its active and accurate
advantage in measuring depth. With knowing the specifications
of a LiDAR (i.e., horizontal and vertical angular resolution
∆φ and ∆θ, the starting vertical angle θ0), we can project
the undistorted point cloud onto a depth image D and height
image H without much information loss. Such an image-type
representation is both lightweight (100KB v.s. 10MB) and
easily processed in parallel.

2) Distance Calculation in Metric Mapping: Our mapping
divides the space into voxels that are ordered according to their
coordinates. To enable the dynamic insertion and deletion,
voxels are managed and queried using the hashing approach.
The original NvBlox implementation calculates the projective
distance (i.e., the distance along the sensor ray to the measured
surface) of each voxel. For each incoming depth and height
image, it iterates through each pixel and then raycats the pixel
until it finds the voxel which intersects with the ray. However,
this method is prone to overestimate the actual Euclidean
distance to the nearest surface in cases where the sensor



ray is not perpendicular to the surface locally. Therefore, we
implement the non-projective method presented in [8], where
the local planar information of the surface is used, to better
approximate the true distance of voxels.

3) Semantic Mapping: Given the labeled image and the
associated pose, we can retrieve all visible voxels within
the camera frustum by raycasting. We only preserve voxels
that stay within the TSDF truncation distance (i.e., near the
surface) and are initialized (i.e., non-zero weight). Each voxel
is projected onto the image plane to obtain the semantic label.
Each semantic voxel stores a vector of label probabilities. We
iteratively update probabilities of each voxel to improve the
semantic consistency using an iterative Bayesian filter. The
global mesh is finally extracted using the marching cubes
algorithm, where labels of each vertex are propagated from
the semantic voxel.

D. Traversability Extraction

The definition of traversability should consider both robots’
mobility and human instructions. Robots’ mobility is typically
formulated according to robots’ kinodynamic property. For
robots that have off-road capability such as quadruped robots,
grassland should be traversable. Regarding the latter factor,
the introduced semantic information of maps is beneficial.
This section proposes a traversability extraction method that
jointly consider both geometric and semantic properties from
the resulting metric-semantic mesh map.

1) Analysis of Geometric Properties: We analyze geomet-
ric properties of the map to determine whether a vertex is
traversable or not: height difference vhd, steepness vs, and
roughness vr. The “height difference” and “steepness” are
used to indicate the risk of collision, while the “steepness”
indicates the changing height of terrain. A vertex is traversable
and selected if its vhd, vs, and vr are larger than thresholds.
• Height Difference refers to the maximum difference in

elevation between two points within a local region (i.e.,
a ball B with radius r): vhd = max ‖vi − vj‖, where
vi,vj ∈ B.

• Steepness refers to the degree of incline of a surface:
vs = arccos(nvi

).
• Roughness refers to the irregularities and unevenness of

a surface: vr = 1
|B|

∑
v∈B nv .

2) Analysis of Semantic Properties: Selected vertices are
checked with their labels, indicating objects’ categories. Sev-
eral vertices are unlabeled since they are not visible by
cameras. For a specific robot, we define a traversability rule
human knowledge. Taking the our vehicle platform (shown in
Fig.3(b)) as an example, only roads are drivable. Vertices that
are not labeled as “Road” are discarded.

III. NAVIGATION SYSTEM

The navigation system consists of these modules:
1) localization: We design a coupled LiDAR-GPS-encoder

localization method to estimate the robot’s poses at real
time. The mesh map is use to enforce the localization
accuracy by being registered with the current scan.
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Fig. 3. The mapping device (a) that consists of a high-resolution LiDAR and
camera is used to collect data for the environmental mapping. The real-world
vehicle (b) provides a platform for testing the navigation system.

(a) Semantic map (seq.00) (b) Map alined on the image (seq.00)

(c) Semantic map (seq.01) (d) Map alined on the image (seq.01)

Fig. 4. Semantic maps are created from data of the sequence00 (top) and
sequence01 (bottom), respectively. Maps are manually aligned with images
to show the specific meaning of labels.

2) Path Finder: We project vertices of the traversable
region onto the 2D occupancy grid map. During nav-
igation, we implement the hybrid A* algorithm [3], one
of the search-based planners, to calculate a trajectory
from the start point to the end point by considering the
kinodynamic constraints of our vehicle.

3) Path Tracking: The path tracking module is composed
of a lateral trajectory tracking and a longitudinal speed
controller. The tracking controller outputs the desired
steering rate based on the cross-track and heading error.
The cross-track error is defined as the distance between
the point on the path closest point on the path with the
front axle of the vehicle. The speed controller utilizes the
PID controller to adjust the vehicle’s speed. The input of
the controller is the desired speed of the closest reference
point to a speed control chassis.

IV. EXPERIMENT

A. Implementation Details

The mapping system is mainly implemented with C++,
while the semantic segmentation is implemented with the
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Fig. 5. Visualization of geometric properties of the resulting metric-semantic mesh map and projected 2D occupancy maps for navigation on sequence00 (top)
and sequence 01 (bottom): (a)(f) height difference, (b)(g) steepness, (c)(h) roughness, (d)(i) occupancy map using semantic information, and (e)(j) occupancy
map without using semantic information. The yellow lines in (d)(i) and (e)(j) indicate the found navigation paths, where the path in (d)(i) does not intersect
with untraversable regions.

Fig. 6. Autonomous navigation in the scenario whose metric-semantic map is built on the sequence00.

Fig. 7. Autonomous navigation in the scenario whose metric-semantic map is built on the sequence01.

Pytorch library. We use a handheld multi-sensor device [4]
(see Fig. 3(a)) to collect mapping data. This device contains
OS1-128 LiDAR, two FILR BFS-U3-31S4C global-shutter
color cameras, and one STIM300 IMU. We also deploy the
navigation system on a ground robot (see Fig. 3(b)). The size
of voxels in mapping is set as 0.25m.

B. Mapping Experiments

1) Qualitative Results: We collected two typical sequences
(00–01) that contain objects including roads, sidewalks, ter-
rain, vegetation, vehicles, and buildings. Fig. 4 visualizes the
resulting metric-semantic map.

2) Timing: We take the the sequence 00 as an example.
Most of computations of mapping are done in GPUs (NVIDIA
GeForce RTX 3080Ti) and very fast. The metric mapping
module that processes each new frame takes an average of
2.0ms, including gathering visible voxels by ray tracing as
well as updating their distance and weight. The semantic map-
ping module needs to find visible voxels and update their class

probabilities via the Bayesian filter, costing around 12.6ms.
The mesh generation takes an average of 22.5ms to update the
global metric-semantic mesh at a constant frequency, which is
affected by the scale of scenarios.

C. Navigation Experiments

1) Results of Traversability Extraction: We visualize the
geometry-based traversability in Fig. 5 on resulting maps.
Objects that are not traversable such as cars, buildings, and
trees are easily distinguished and filtered out by setting
threshold from geometric information, i.e., “height difference”,
“steepness”, and “roughness”. But the sidewalk and grassland
which are not traversable for vehicles have to be distinguished
by semantic information. By combining all geometric and
semantic information, we obtain the traversable map, and then
generate occupancy maps for the subsequent motion planning,
as shown in Fig. 5(d) and Fig. 5(i).

2) Results of Real-World Navigation: The vehicle is given a
set of start point and end point to perform missions. It uses the



3D metric-semantic map for localization and the occupancy
map to find a safe and collision-free path. Fig. 6 and Fig. 7
record the testing process. The average speed is 3m/s.

V. CONCLUSION

We introduced a online metric-semantic mapping system for
autonomous robot navigation. The system consists of several
key modules, including state estimator, semantic segmenta-
tion, TSDF-based metric-semantic mapping, and extraction of
traversable regions. We further utilized the resulting map in a
navigation system for localization and identifying the travers-
bility of ground. We believe that this paper should provide a
new framework and insight of the high-level representation of
outdoor environments.
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