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Abstract—In recent years, 3D scene graphs have emerged
as a powerful representation for 3D environments, capturing
information from low-level geometry to high-level semantics. A
3D scene graph represents an environment as a hierarchical
graph grounded in the physical world, where nodes represent
spatial concepts and edges represent relationships between con-
cepts. While significant progress has been made for 3D scene
graph generation, extensions to large-scale or novel environments
remains an open problem. A key challenge in doing this is the
lack of fully annotated datasets that include high-level concepts.
Thus, there is a need for techniques that can leverage common-
sense knowledge and symbolic reasoning to infer semantic labels
that have not been seen at training time. In this work, we inform
3D scene graph construction with a spatial ontology using logic
tensor networks (LTNs), largely reducing the need for supervised
training data. We show that using a spatial ontology during
training allows the models to predict previously unseen labels as
well as enhance performance from 5.0% to 24.6% when training
the proposed model using only 0.1% of the training data.

I. INTRODUCTION

Motivation. A fundamental requirement for robots to in-
terpret and execute high-level instructions from humans is a
semantic understanding of the environment. In recent years,
3D scene graphs have emerged as an expressive hierarchical
representation of complex scenes integrating geometry and
semantics at multiple levels of abstraction. A 3D scene graph is
a hierarchical graph [1] grounded in the physical world where
nodes represent spatial concepts (e.g., from low-level geometry
to high-level semantics) and edges represent relations between
concepts. Significant progress has been made in 3D scene
graph generation [1–5], but, existing techniques are restricted
to only a few types of abstractions (e.g., objects, rooms, and
buildings) and use hard coded algorithms to construct these
layers. A key challenge in expanding 3D scene graphs across
different environments is the lack of training datasets cap-
turing high-level semantics. Thus, there is a need to develop
techniques for constructing 3D scene graphs that can leverage
common-sense spatial knowledge to infer semantic labels that
have not been seen at training time.

Contribution. In this work, the main objective is to en-
able 3D scene graph construction in scenarios where large
annotated datasets are not available. Specifically, we present
a neuro-symbolic framework to inform 3D scene graph con-
struction with common-sense spatial knowledge, largely re-
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Fig. 1: Comparsion of grounded concepts in the places layer of a 3D
scene graph using our fully-supervised approach (middle) against the ground-
truth labels (left) and our self-supervised approach (right). A top-down view
of the labeled 3D scene graph for each approach is shown, with each
place node colored by either the ground-truth or predicted label. Our self-
supervised approach achieves qualitatively similar accuracy to the fully-
supervised approach despite not having trained with labels.

ducing the need for supervised training data. For example, if
annotations are not available in the training data, common-
sense facts relating high-level concepts (e.g., "kitchen") to
low-level semantics detectable by the robot (e.g., "sink",
"counter") can be leveraged as a supervisory signal. We design
a model composed of a graph neural network (GNN) and
a multi-layer perceptron (MLP) and wrap the model in a
logic tensor network (LTN) [6] to incorporate common-sense
facts from a spatial ontology. While common-sense facts may
be used directly to make predictions (i.e., generalized truth
queries [6]), a learning-based framework is required to learn
a model leveraging both the training data and common-sense
facts. This allows for self-supervised learning of labels not
present in the training data and prevents the model from
making mistakes that would typically not be made by humans
(e.g., a room containing a “bed” is typically a “bedroom”).
In the experiments, we show the proposed model is able to
predict previously unseen labels and enhance performance
with limited data.

II. RELATED WORK

3D Scene Graphs. The pioneering work of Armeni et al. [2]
introduced the notion of 3D scene graphs as a hierarchical
model of 3D environments. In [3, 7], the model was extended
to construct 3D scene graphs from sensor data while adding



richer hierarchy of layers. Several works explore constructing
3D scene graphs from geometric data such as Wald et al. [8]
based on GNNs and Gothoskar et al. [9] based on MCMC.
More recently, several approaches explore the creation of
3D scene graphs in real time [4, 5]. Hughes et al. [1]
further discuss constructing higher-level concepts (e.g., rooms)
using a fully-supervised GNN approach. Finally, several works
have successfully used 3D scene graphs for planning in
robotics [10–12].

Ontologies. A fundamental requirement for robots to com-
municate a meaningful representation of a 3D environment
is a common vocabulary describing the concepts and relations
necessary to complete a given task. Such a vocabulary may be
represented as an ontology. A significant effort has been made
in the creation of common-sense ontologies and knowledge
graphs [13–21]. In recent years, there has been a surge in
applying these to problems such as 2D scene graph gener-
ation [22–25], image classification [26, 27], visual question
answering [28–32], task planning [33–35], and representation
learning [36, 37], to name a few.

III. PRELIMINARIES

3D Scene Graphs. A 3D scene graph is a compact graphical
representation of a 3D environment where nodes represent
entities in the scene, and edges represent spatial or logical
relationships between nodes. Formally, a 3D scene graph is
a hierarchical graph [1] grounded in the physical world. A
3D scene graph is composed of groupings of nodes and
edges called layers, which are subgraphs corresponding to
different levels of abstraction. For instance, places in an
indoor environment can be grouped in rooms, and rooms into
buildings. Inter-layer edges denote groundings from higher-
level concepts to lower-level concepts. While existing work
on 3D scene graphs focus on grounding concepts in indoor
environments, we extend the 3D scene graph model in [3, 5] to
support constructing 3D scene graphs based on common-sense
knowledge. Specifically, we retain the mesh and places layers
as described in [1] as the low-level layers and construct the
high-level layers based on the concepts desired to be grounded
in the 3D scene graph. We refer to the high-level layers as
abstract layers and construct them based on the task and/or
capabilities of the robot encoded in a spatial ontology.

Logic Tensor Networks. A logic tensor network (LTN) is
a neural-symbolic framework that uses the satisfaction of a
knowledge base K as an objective for training neural networks.
To allow for back-propagation of model parameters, LTNs
use real logic, a differentiable first-order language, to define
an interpretation1 I to associate a tensor of real numbers to
any term of the language and a real number in the interval
[0, 1] to any formula φ ∈ K. The interpretation defines the
mapping of logical connectives interpreted using fuzzy logic
semantics and quantifiers interpreted using fuzzy aggregators
to real numbers. In practice, an LTN converts a knowledge
base (i.e., set of logical formulas) into a computational graph

1The interpretation is the assignment of constants, variable and logical
symbols to tensors or operations on tensors in the field of real numbers. Here,
we prefer using “interpretation”, standard in the logics literature, compared
to “grounding” used in [6].

that enables gradient-based optimization. In this work, we use
LTNs to train a model using common-sense knowledge (e.g.,
from a spatial ontolgy) to ground concepts in 3D scene graphs.

Spatial Ontology. We represent a spatial ontology as a
graph where nodes represent spatial concepts and edges rep-
resent spatial relations between concepts. We consider nodes
representing low-level concepts (e.g., objects) and high-level
concepts (e.g., locations), and to simplify the problem, we
only consider edges representing inclusion relation meaning
an edge between a low-level concept A (e.g., “sink”) and a
high-level concept B (e.g., “kitchen”) means that A is located
in B (e.g., a “sink” is located in a “kitchen”). In contrast
to a 3D scene graph, which is a grounded representation, a
spatial ontology is independent of the actual existence of such
concepts. For example, the concept of “chair” in an ontology
is not associated with a particular instance of a “chair”, but
in a 3D scene graph, the concept of “chair” is grounded in
the geometry of the scene creating an instance of a “chair”.
In other words, an ontology is a graph representing a database
of all possible concepts and their relations, while a 3D scene
graph is a model of a specific environment.

IV. LEVERAGING COMMONSENSE SPATIAL KNOWLEDGE
FOR 3D SCENE GRAPH GENERATION

In this section, we present a framework to inform 3D scene
graph construction with a spatial ontology using GNNs and
LTNs. We formulate this as a node classification problem
using GNNs and incorporation the spatial ontology in the
loss using LTNs to constrain the model to make predictions
consistent with the spatial ontology. The proposed architecture
for learning and inference is illustrated in Fig. 2, which we
discuss in detail in the remainder of this section.

A. Architecture

Let the graph representing the places layer of a 3D scene
graph be denoted by G = (V, E) and the set of labels we
seek to infer denoted by Y . Here, the labels Y correspond to
the concepts to be grounded in the 3D scene graph, which
represent labels of the next level up in the hierarchy (e.g.,
rooms). We are given a set of graphs with partially labeled
nodes v ∈ V each associated with a label yv ∈ Y . The features
associated to the nodes v ∈ V are denoted by

X = {xv}v∈V , (1)

where xv is the feature vector for node v ∈ V . Additionally,
we encode the semantics of the children C(v) (i.e., nodes in
the mesh layer) of each node v ∈ V as

Q = {qv}v∈V , (2)

where qv =
∑
u∈C(v) ỹu/||

∑
u∈C(v) ỹu||1 with ỹu represent-

ing the one-hot encoding for the label yu of node u ∈ V . The
objective is to design a model to predict the labels of the nodes
in the places layer for previously unseen graphs. In contrast
to standard techniques, we wrap the model in an LTN, and
we use the satisfaction of a knowledge base K (discussed in
detail in the following section) as a loss during training. We



Fig. 2: (Left) Architecture for training phase. The place features are processed by the GNN to compute node embeddings, and MLP takes the embeddings
as input and outputs the logits. The MLP is wrapped in an LTN to compute the satisfaction of the knowledge base using the data-driven predicates based
on ground truth labels and ontology-driven predicates based on the aggregated semantics of the mesh layer. The parameters of both the GNN and MLP are
updated based on the loss. (Right) Architecture for inference phase. The LTN is dropped during the inference phase, and the trained GNN and MLP predict
the node labels of the room layer given the place features.

decompose the model into a GNN for computing embeddings
and an MLP for predicting the node labels:

GNN :V, E ,X → X (3)
MLP :X → Y. (4)

where the parameters for the entire model include both the
GNN and MLP parameters θ = {θGNN, θMLP}. We aim to
learn the parameters θ∗ that maximize the satisfiability of the
knowledge base K:

θ∗ = arg min
θ∈Θ

(
1− SatAgg

φ∈K
Iθ(φ)− λR(θ)

)
(5)

where R is a regularization term weighted by λ and SatAgg :
[0, 1]∗ → [0, 1] is an aggregating operator for the formulas in
the knowledge base.

B. Knowledge Base

Axioms. The axioms in the knowledge base are logical
formulas composed of constants, variables, and predicates. We
distinguish the axioms by whether they are data-driven φD
(i.e., interpreted from labeled data) or ontology-driven φΩ (i.e.,
interpreted from the ontology and unlabeled data). We define
the knowledge base K that our model seeks to satisfy by the
following axioms:

φD : ∀Diag (x, y) IsClass(x, y) (6)
φΩ : ∀Diag (x, q) Exp(Ω, q)→ Sat(x,Ω, q). (7)

where Diag(·) denotes diagonal quantification as described
in [6] and Ω is an n × m matrix with entries ωij encoding
the ontology where n is the number of high-level semantics
(i.e., labels of the room layer) and m is the number of low-
level semantics (i.e., labels of the mesh layer). If an edge
exists between high-level label i and low-level label j in the
ontology, ωij > 0; otherwise, ωij = 0 . This implies that
the high-level label i is a valid label according to the spatial
ontology for a node with low-level label j. The data-driven
axioms φD promote the model to make predictions that agree
with the ground truth labels, and the ontology-driven axioms
φΩ promote the model to make predictions that agree with the
spatial ontology despite the ground truth labels.

Predicates. Next, we define the interpretations of the pred-
icates, which are functions projecting constants and variables
onto values in the interval [0, 1]. The interpretation of the
IsClass predicate is given by

I(IsClass|θ) : x, ỹ 7→ ỹT · softmax(MLP(x)), (8)

and the interpretations of the Exp and Sat predicates are
given by

I(Exp) : Ω, q 7→ sum(Ω · q) (9)

I(Sat|θ) : x,Ω, q 7→ softmax(MLP(x))T · Ω · q. (10)

where the notation (·|θ) denotes the predicate is parameterized
by θ; thus, the model parameters θ for the GNN and MLP are
updated together during training based on the satisfaction. In
words, the IsClass predicate provides a similar function to
training a model using a cross-entropy in typical supervised
scenarios with the exception that the IsClass predicates
return a value between [0, 1]. The Exp predicate returns values
close to 1 if the spatial ontology includes relations between
the low-level labels of mesh nodes in the data (e.g., encoded
by q) and the high-level labels in the ontology. In contrast,
if the ontology does not include these relations, Exp returns
values close to 0. The Sat predicate returns values close to
1 if high-level labels predicted by the model match the high-
level labels in the ontology adjacent to the low-level labels of
mesh nodes (e.g., encoded by q).

V. EXPERIMENTS

A. Experimental Setup
Dataset. We utilize the Matterport3D (MP3D) dataset [38],

which is an RGB-D dataset consisting of 90 indoor scenes. We
use the Habitat simulator [39] along with Hydra [1] to generate
3D scene graphs for 4 random trajectories, approximately
100 meters in length, in each of the 90 scenes. Each 3D
scene graph is produced using the ground-truth 2D semantic
segmentation provided by Habitat. The provided label space
has 40 semantic labels (i.e., mpcat40 [38]), of which we
discard the labels gym_equipment and beam. We manually
build a spatial ontology based on common-sense knowledge
(shown in Table I); however, the spatial ontology only captures
a few intuitive relations in the dataset (e.g., sink is contained



Bedroom Bathroom Kitchen Living Room

Bed 1 0 0 0
Drawers 1 0 0 0

Toilet 0 1 0 0
Shower 0 1 0 0

Sink 0 0 1 0
Appliance 0 0 1 0
Cabinet 0 0 1 0

Sofa 0 0 0 1
Fireplace 0 0 0 1

TABLE I: The spatial ontology used in the experiments where rows denote
low-level labels corresponding to the mesh and the columns denote high-level
labels to be grounded in the places layer.

Layers 3
Hidden Dimension 32

Learning Rate 0.001
Dropout 0.25

L2 Regularization 1e-05
Attention Heads 4

Activation RELU

TABLE II: Parameters used for training the proposed model where the same
parameters are used for all predicate configurations.

in bathroom in the dataset although not included in the spatial
ontology). We use the official train, test, and validation splits
of the 90 MP3D scenes [38].

Training. We train the model using different axioms con-
figurations that include (i) only the data-driven axioms φD,
(ii) only the ontology-driven axioms φΩ, and (iii) both the
data-driven and ontology-driven axioms. The models trained
using only data-driven axioms are used as a baseline. The node
features for the places are the concatenation of the position
and the word2vec [40] encoding of the aggregated semantic
labels of the child nodes in the mesh layer. For the GNN,
we use a graph attention network (GAT) [41, 42], but any
message passing architecture is applicable to our framework.
We tune the hyper-parameters using a grid search over a set
of predefined values, and the hyperparameters remain constant
between different axiom configurations as the grid search
returns the same hyperparameters for each configuration. The
hyperparameters used during training are given in Table II. For
the connectives and quantifiers, we use a product configuration
except for the implication operator where the Goguen operator
is used instead of the Reichenbach operator [43]. We using
stochastic gradient descent (SGD) with the Adam optimizer,
and we run the optimization until the loss is converged (e.g.,
loss changes less than 0.0001 for 3 epochs) or 500 epochs is
reached. After each epoch, the model with the best validation
accuracy is retained for testing. Each model is trained 3 times
using random initializations, and the statistics are reported
in the results. We implement the learning architectures using
PyTorch Geometric [44] and LTNTorch [6].

B. Results

The goal is to test the model in scenarios with limited data
and previously unseen labels. We simulate such scenarios by
training the model (i) only using a fraction of the training
dataset and (ii) holding out labels for a set of concepts. In both
cases, the model is tested on the entire test dataset. The results
are presented in Table III for keeping all labels and in Table IV

% of Data Kept for Training (fully known labels)

100% 1% 0.1%

φD (baseline) 0.487± 0.017 0.443± 0.016 0.053± 0.018
φΩ 0.245± 0.001 0.246± 0.001 0.242± 0.004

φD , φΩ 0.487± 0.004 0.405± 0.016 0.246± 0.004

TABLE III: Accuracy for different holdout percentages of training data. No
data held out during testing. Best in bold.

% of Data Kept for Training (partially unknown labels)

100% 1% 0.1%

φD (baseline) 0.168± 0.010 0.157± 0.038 0.035± 0.029
φΩ 0.249± 0.001 0.246± 0.001 0.242± 0.004

φD , φΩ 0.255± 0.002 0.251± 0.004 0.244± 0.001

TABLE IV: Accuracy for different holdout percentages of training data with
labels masked for bathroom, kitchen, hallway, bedroom, living room, and
family room. No data held out during testing. Best in bold.

for holding out a set of labels. The labels held out capture
concepts both contained and not contained in the spatial
ontology.2 As shown in Table III, the incorporation of the
ontology-driven axioms provide similar or better accuracy than
only the data-driven axioms. However, the improvement is
significant when using the ontology-driven axioms if concepts
are missing in the training data. This is due to the fact
that the ontology-driven axioms incorporate a self-supervised
component to the loss even if labels are unknown. This is
illustrated in Fig. 1 where the predicted labels using only
ontology-driven axioms are compared against using both the
ontology-driven and data-driven axioms. The stairs, lounge,
hallway, and dining room are misclassified since not included
in the spatial ontology, but bedroom, kitchen, and living room
are classified more accurately. Furthermore, misclassifying a
kitchen with a bathroom is a reasonable approximation given
the ontology does not associate bathroom with sink.

VI. CONCLUSION

While the proposed framework was demonstrated on pre-
dicting high-level semantics in the places layer, this procedure
can be applied sequentially to produces additional layers in
the hierarchy. Furthermore, the experiments were performed
in an indoor scenario due to the abundance of indoor datasets
for benchmarking; however, the proposed framework is not
restricted to indoor abstractions. Instead, the framework allows
for self-supervised training on unlabeled datasets to infer high-
level concepts defined in a spatial ontology. We show in the
experiments that the proposed framework allows the prediction
of labels unseen during training and significant benefits in
scenarios where data is limited. While the main limitation of
the proposed framework is the reliance on a spatial ontology,
existing knowledge bases may be leveraged depending on the
application, or language models may be used to infer common-
sense spatial knowledge [45], which show promise in filling
this gap in the future.

2The labels held out include: bathroom, kitchen, hallway, bedroom, living
room, and family room. The labels held in include: closet, entryway, garage,
library, laundry room, conference room, lounge, office, recreation room, stairs,
utility room, theatre room, gym, balcony, classroom, dining room, spa, and
unknown.
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