
Plug-And-Play Object-Centric Representations From
“What” and “Where” Foundation Models

Junyao Shi∗, Jianing Qian∗, Yecheng Jason Ma∗, Dinesh Jayaraman
University of Pennsylvania

{junys, jianingq, jasonyma, dineshj}@seas.upenn.edu

Abstract—There have recently been large advances in the
problem of segmenting unknown category objects in general
images. To leverage these for improved robot learning, we propose
a new framework for building object-centric representations
(OCR) for robotic control. Building on theories of “what-where”
representations in psychology and computer vision, we use
segmentations from a pre-trained model to stably locate across
timesteps, various task-relevant entities in the scene, capturing
“where” information. To each such segmented entity, we apply
other pre-trained models that build vector descriptions suitable
for robotic control tasks, thus capturing “what” the entity is. Thus,
our OCR is constructed by appropriately combining the outputs
of off-the-shelf pre-trained models, with no new training. On
various simulated and real robotic tasks, we show that imitation
policies for robotic manipulators trained on our OCR perform
better than prior OCRs that are typically trained from scratch, as
well as the current state of the art unstructured representations.

I. INTRODUCTION

One of the fundamental challenges of intelligence is how
to represent and process the continuous and complex stream
of sensory information that we receive from the world. The
“what-where” representation theory [5, 12, 49] in cognitive
science postulates that the brain uses different neural pathways
to encode two types of information: “what” information, which
refers to the identity, features, and properties of an entity; and
“where” information, which refers to the location, direction,
and distance of an entity. A growing literature on object-centric
representations (OCRs) attempts to instantiate these ideas in
artificial intelligence, commonly focusing on co-training the
“what” and “where” pathways within a target domain.

We investigate an alternative, simpler route towards OCRs,
paved by recent advances in adjacent disciplines. First, com-
puter vision researchers have recently achieved dramatic ad-
vances on image segmentation [24, 63], the task of identifying
groups of pixels that correspond to semantic objects and their
parts. These pre-trained models can now reliably locate the
discrete entities in in-the-wild images in arbitrary domains.
Next, pre-trained unsupervised vector representation encoders
have matured and are fast becoming the de facto standard de-
scriptors of the contents of raw sensory inputs for downstream
tasks in many domains: language and audio [2, 7, 11, 41],
vision [11, 16, 41], and robotics [32, 33, 37, 55].

We propose to chain these foundation models together
to create a new general-purpose pre-trained OCR for robot
learning. Having located (“where”) the entity slots in an image
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observation with a pre-trained image segmentation model,
we propose to describe the contents of each slot (“what”)
with another pre-trained model, a control-aware unsupervised
representation encoder.

We instantiate this plug-and-play OCR framework by picking
two representative “where” and “what” foundation models:
SAM [24] for segmentation, and LIV [33] for control-aware
image representation, which have both individually been pre-
trained on large and diverse datasets, and afterwards been shown
to work well on many domains of interest. If the composite
OCR, “SAM-LIV” inherits these generalization properties, it
may be used off-the-shelf in arbitrary new tasks; see Figure 1
for a schematic overview.

Indeed, we evaluate SAM-LIV on unseen simulated and
real-world robotic manipulation settings. We find that SAM-
LIV not only provide better object representation than other
OCR approaches, but more importantly, also enable signifi-
cantly better policy learning compared to both pre-trained flat
representations and representations learned in-domain from
scratch. Through ablation studies, we show that our use of pre-
trained models in both the “what” and “where” components
are critical to achieving substantial gains. In addition, we
demonstrate that policies trained with SAM-LIV outperforms
prior representations on real-robot manipulation tasks, fully
showcasing the practicality and generality of our plug-and-play
object-centric representation for robotics paradigm.

II. PLUG-AND-PLAY OCRS FOR ROBOTIC MANIPULATION

Towards chaining our “where” and “what” foundation models
(SAM and LIV, respectively) into a useful representation for
manipulation policy learning, there are three key questions to
address: where are the relevant object regions, what are their
contents, and how should robots act to accomplish manipula-
tion tasks given such what-where object-centric representations.

A. The Where: Localizing and Assigning Objects to Slots

To go from SAM mask outputs to OCR slot masks li, we
propose to match each mask to some pre-specified task-relevant
object segments.

Specifying task-relevant objects in a reference image.
Before we can begin to extract OCRs in a new domain, we
collect some reference images, such as from the frames of
expert demonstrations that may be required anyway to train a
policy. We use these to compute the background mask following
the procedure in [1]. Then, on one of these same reference



Fig. 1. SAM-LIV: plug-and-play object-centric representations for robotics by chaining “what” and “where” visual foundation models.

images oref , we run SAM to produce the set of segmentation
masks mref

i . By design of SAM, mref
i is an over-complete set

of segmentation masks corresponding to various entities i in
the scene. This includes entities at various levels of granularity
from objects all the way down to their parts and subparts, and
also task-irrelevant entities in background regions of the scene.

To discard distractor entities among these reference image
masks, we manually select k masks {lref1 , . . . , lrefk } that
most closely correspond to the task-relevant objects in the
environment. In practice, this procedure requires very little
annotation effort: about 1 minute for each environment. Note
that this convenient specification interface is only made possible
by the object representation.

Localizing task-relevant objects in each observation.
Given these selected reference masks that encode task-relevant
objects, the slots in our desired OCR must bind to these objects
in each image. Towards this, we now overview a procedure to
localize these objects.
• Screening the object-level foreground entity candidates.

Given any new image observation o, we first identify
background regions as described above. Then, we compute
the SAM masks {mi(o)}qi=1 and identify object-level fore-
ground entities among these. We use a greedy non-maximum
suppression algorithm: sorting the masks in decreasing order
of foreground area, we iteratively select masks mi that do
not overlap with either previously selected masks or the
background regions. The end result is a much shorter list of
n SAM mask candidates {ci(o)}ni=1 for slot binding.

• Consistent slot binding: Finally, to decide which candidates
to bind to the k slots in our OCR representation of image
o, we perform Hungarian matching [25] among n selected
candidates {c1(o), . . . , cn(o)}, and the k task-relevant masks
{lref1 , . . . , lrefk }. We compute as the matching costs the
Euclidean distance between pre-trained DINO-v2 representa-
tions of each slot mask, obtained through ROI-pooling.

The final output is an ordered set of k masks {l1(o), . . . , lk(o)},
which will serve as the “where” component of our OCR.

B. The What: Representing The Image Contents in Each Slot

Given slot masks {l1(o), l2(o), . . . , lk(o)} for image o, we
must compute, for each slot, its “slot vector” zi. This slot vector
captures the properties of the object visible in the scene regions
specified by li, i.e., “what” is in li? As foreshadowed above,
we will use a pre-trained LIV encoder to compute these slot
vectors. For each slot i, we first generate a corresponding
masked RGB image oi by element-wise multiplying the

binary mask li with the image o, and then compute LIV
representations zi = LIV(Ii) over it. In addition to these slot-
wise LIV features, we also compute the LIV representation
of the unmasked original image y(o) = LIV(o). Together,(
y(o), s(o) = {(zi(o), li(o))}ki=1

)
constitutes our “plug-and-

play” OCR, which we call SAM-LIV.

C. The How: Learning Robot Manipulation Policies from
Demonstrations with SAM-LIV

So far, no learning has occurred as we have leveraged pre-
trained representations to format visual observations into an
OCR. For policy learning, we adopt an imitation learning
paradigm, in which the policy network is trained to predict
the expert actions in the provided demonstrations. With
demonstrations, it is also easy to satisfy the assumption of task
relevant object specficication as outlined in Section II-A. Now,
we describe two straightforward methods for incorporating the
extracted representation into policy learning.

Policies Over Concatenated Slot Vector Representations.
One simple way to utilize the scene vector y and the object slot
vectors ({z}) is to concatenate them into a fixed dimensional
input vector and implement the policy architecture using a
multi-layer perceptron (MLP):

π(y, {z}) := MLP(Concatenate(y, z1, ..., zk)) (1)

This choice is simple to implement and suitable for visually
simple environments in which object binding is unlikely to be
inconsistent over different observations.

Policies Over Slot Permutation-Invariant Representations.
Given that the object binding operation may be sensitive to
noise and occasionally makes incorrect assignments, policy
architectures that encode permutation invariance [23, 51, 52,
60] at the descriptor level may fare better for control [61]. We
employ a self-attention (SA) [51] layer to process the OCR,
and then aggregate the outputs to feed into an MLP policy.

π(y, {z}) := MLP
(∑

SA(y, {z})
)

(2)

III. EXPERIMENTAL RESULTS

Our experiments aim to answer the following questions: 1)
Does our method provide better off-the-shelf OCRs than alterna-
tive OCR approaches? 2) Does our method enable better policy
learning compared to using flat pre-trained representations or
curated masks alone? and 3) Does our method work on real
robot? We begin by describing our simulation environments
used to answer the first two questions, and then delve into



Fig. 2. SAM-LIV segmentation results over demonstrations.

detailed experimental results answering all three questions
affirmatively in Section III-A-III-C, respectively. Video and
more visualization results: sites.google.com/view/sam-liv

Simulation Environments. We use RLBench [20] as our
simulation testbed to validate our algorithmic design. More
specifically, we have selected Pick up Cup and Rubbish
in Bin, two challenging tasks from the RLBench suite that
explicitly demands object-level inductive bias for successful
learning (Figure 3(a) & 3(b)). Pick up Cup tasks the robot
with picking up the red cup on the table in the presence of a
distractor cup; the cup positions and the color of the distractor
cup are randomized for each episode. Rubbish in Bin
requires the robot to pick up the rubbish and place it inside the
trash bin; the object locations, including the distractor apples,
are randomized for each episode. Compared to Pick up
Cup, this task also requires reasoning about object affordance
(i.e., the desired rubbish location in the bin cannot be reached
without first lifting the rubbish high off the table), and has
been found empirically to be one of the most challenging tasks
in RLBench for imitation learning [19].

A. Evaluating SAM-LIV Slot Masks

Quantitative Results. As discussed in Section A, prior deep
OCRs typically require large domain-specific datasets for unsu-
pervised training. This is unsuitable for sample-efficient policy
learning in a new environment. For this experiment, we train
AST-SEG [44], a state-of-the-art unsupervised OCR method,
on our demonstrations in RLBench (about 1400 images for
Pick up Cup and 2500 images for Rubbish in Bin).
We report the quantitative results with foreground adjusted
random index (FG ARI) [18, 42], a standard segmentation
metric. SAM-LIV achieves 0.99 FG ARI scores (max is 1) on
both tasks, while AST-SEG’s fails to segment almost all the
foreground objects, scoring only 0.2 on Pick up Cup and
0.1 on Rubbish in Bin.

Qualitative Results. We show the qualitative visualization
of masks in various environments in Figure 2; see Appendix E
for more qualitative results. To better understand the quality of
these masks, we compute some qualitative metrics in simulation,
exploiting the availability of ground-truth object masks. In
particular, after we compute the masks for all observations
in the policy learning dataset, we use pixel majority voting

(a) Pick up Cup (b) Rubbish in Bin (c) RealRobot (3 Tasks)
Fig. 3. Evaluation Environments.

to decide SAM-LIV’s slot assignment of each ground-truth
object mask in an image. If the slot assignments are consistent
with the pre-specified task-relevant mask subset (see section
II-A), then we say they are correct for this image. Using this
metric, we find that SAM achieves 94.3% accuracy on Pick
up Cup and 87.8% accuracy on Rubbish in Bin, with
an overall accuracy of 90.3%.

B. Policy Learning Simulation Experiments

Methods. To thoroughly validate our algorithm in controlled
simulation setting, we ablate SAM-LIV along various axis.
First, to assess the quality of our SAM-based object binding
pipeline, we compare to using ground truth masks provided by
the environment, denoted as GT-LIV. Note that this ablation
cannot be implemented in real-world scenarios, but serves
as an upper bound to assess the relative goodness of our
method. Second, to stress the importance of explicit object
reasoning, we compare SAM-LIV to LIV, keeping only the flat
scene-level representation. Finally, to assess the value of a pre-
trained model (LIV) for describing the contents of each object
slot, we consider using a CNN network with and without
ground truth masks, denoted as CNN-RGB and GT-CNN-
RGB, trained from scratch as the visual descriptor. For this
baseline, we use the official implementation from James and
Davison [19], and train with imitation learning loss on in-
domain demonstration data. As shown in Table I, we find both
CNN-RGB and GT-CNN-RGB to struggle without privileged
depth map input from the simulator (consistent with [19]).
Therefore, we primarily consider a variant, SAM-CNN-RGBD
that additionally incorporates depth maps to drive the CNN
learning. Note that any method that incorporates LIV does
not use depth, as our eventual goal is plug-and-play real-world
usage in which accurate depth cannot be guaranteed.

Training & Evaluation. Our policy training and evaluation
protocol mostly follows James and Davison [19]; in particular,
for each task, we use 100 demonstrations collected using a
motion planner, and train single-task policies using behavior
cloning. The action space is Franka robot’s 6-DOF end-
effector pose and gripper state, and we use keyframe action
representation to reduce the task horizon; see Appendix C for
more details. In simulation, as we find the mask outputs of
our object binding algorithm to closely match the ground-truth
masks (see results below), we use the simple MLP architecture
for the policy network to stay consistent with the original
implementation. For each method, we train policies using
3 seeds and report the mean and the standard error of the
maximum rewards each seed achieves during training on 100
evaluation rollouts, following standard practice [38].

https://sites.google.com/view/sam-liv


Task Pick up Cup Rubbish in Bin

SAM-LIV 126.0 ± 2.1 50.0 ± 2.0
GT-LIV 137.3 ± 2.4 57.3 ± 3.3
LIV 98.7 ± 3.7 43.7 ± 1.5

SAM-CNN-RGBD 105.3 ± 21.0 25 ± 8.6
GT-CNN-RGBD 117.0 ± 15.5 16.7 ± 8.7
CNN-RGBD 98.3 ± 7.3 8.0 ± 2.3

GT-CNN-RGB 31.7 ± 2.0 8.7 ± 1.3
CNN-RGB 34.3 ± 4.9 5.3 ± 0.7

TABLE I
RLBench behavioral cloning mean episode reward averaged over 100 rollouts.

Results. As shown in Table I, SAM-LIV significantly
outperforms all baselines, demonstrating the joint effectiveness
of our object binding procedure and using pre-trained flat
visual encoder as mask descriptors – all without any in-domain
training of any component in the representation pipeline. Our
mask generation procedure is generally effective, regardless
of whether the curated masks are processed using LIV or a
CNN trained from scratch, as the respective method closely
tracks the variant that uses ground-truth mask. It is a priori
not obvious that SAM-LIV or GT-LIV would outperform LIV,
as LIV by itself is already a strong baseline and processing
mask images using LIV may seem unnatural given LIV’s
training data. However, our results indicate that doing so is in
fact quite effective. The benefit of using pre-trained flat vision
encoder as mask descriptor further trickles down to downstream
policy learning: LIV based methods exhibit far less variance
compared to training-from-scratch CNN methods, all while
delivering higher performance across the board without access
to privileged depth information.

C. Real Robot Experiments

Given our encouraging simulation experiments, it is natural
to ask whether our algorithm can work on real-world robotic
manipulation tasks, which present the additional challenges of
noisy image observations from imperfect camera sensors and
increased object quantity and diversity.

Environment. To realize the stated challenges above, we
design a real-world environment (referred to as RealRobot) that
consists of a counter-top kitchen setup, in which a Franka robot
is tasked with placing various fruits, {apple, eggplant,
pineapple} in the green pot located on the far side of the
table. Numerous distractors (e.g., toaster, black pot, black pan,
burger plate) are placed on the table to create a more visually
realistic kitchen scene, bringing the total number of objects to
10. We use a single 3rd-person monocular RGB camera for
policy learning (see Figure 3(c) for the camera view), and this
camera is placed on the far side of the table (see Appendix D
for a side view of the scene), making object appearances smaller
compared to more idealistic simulation setup.

Methods, Training & Evaluation. We compare SAM-
LIV and LIV using behavior cloning with keyframe action
representation as in our simulation experiment. For each task,
we collect 100 trajectories using human teleoperation with the
fruits randomly initialized in the center workspace of the table

Fig. 4. RealRobot Imitation Results.

for each trajectory. As it is typical to train visuo-motor control
policies in the real world with data augmentation to improve
robustness, we train both methods with random cropping
augmentation to attain best performance for all methods; for
SAM-LIV, the random-cropping is consistently applied for
both the raw RGB input and the masks input. To assess the
raw generalization capability of respective representations, we
also consider a setup without any data augmentation. As real-
world mask outputs are noisier, our default SAM-LIV policy
uses the attention policy architecture discussed in Section II-C.
For each trained policy, we run 10 trials per task, randomizing
the positions of all fruit objects, and we use the identical set
of object randomizations for all policies. See Appendix D for
more experimental details.

Results. As Figure 4 shows, SAM-LIV on average offers
substantial gains compared to LIV; in the case of Apple, it
achieves more than double the success rate. When trained
without augmentation, SAM-LIV still achieves non-trivial
performance, whereas LIV fails to solve any trial and overall
exhibits degenerate reaching behavior, suggesting significant
overfitting to the limited dataset size. We provide additional
ablation results and analysis of BC losses in Appendix D. These
results highlight the sensitivity of flat scene-level representa-
tions, even when they have been trained on large, diverse human
videos. Several prior works [32, 38, 55] have demonstrated
the capability of “what” foundation models on real-world
visuomotor control tasks; however, their experiments all focus
on single-task setting with limited object position variation.
Given these models’ lack of fine-grained object understanding,
it is not surprising that they may struggle in more object-
oriented tasks and overfit to just several motion trajectories in
the limited data regime. However, as our experiments suggest,
it is not that their representations are not compatible with
fine-grained object reasoning, but rather that they are not been
given the right input observations – the very issue that can be
can be mitigated with our chaining approach that augments
“what” foundation models by explicitly providing the “where”
from a powerful off-the-shelf segmentation model.

IV. CONCLUSION

We have presented a simple yet effective framework for
plug-and-play object-centric representations for visual robotic
manipulation from “what” and “where” foundation models.
Instantiated using state-of-art visual foundation models, SAM-
LIV substantially outperforms baselines in simulation and real
world without in-domain object-centric representation learning.
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APPENDIX

A. Problem Setup and Background

We are interested in sample-efficiently learning robotic
manipulation policies in arbitrary multi-object scenes, with
some task-relevant and some distracting objects. For example,
in our real robot experiments, we task a robot arm attached to a
cluttered kitchen counter-top with moving fruits and vegetables
into various pots and pans around it, with only a few tens of
demonstrations.

Object-Centric Representations (OCR). We propose to
enable such tasks with object-centric representations (OCRs)
of visual scenes. Like many prior works [3, 10, 21, 29, 30, 44],
we target an OCR that at each time t summarizes the scene ot

in terms of various discrete “slots” sti, that ideally correspond
to the entities in the scene, i.e., objects and parts. To unclutter
notation, will omit the time index t when it is not relevant.
Each slot is a tuple si = (li, zi) with two components: (1)
the location or “where” component li indicates the presence
and location of an entity, such as through a segmentation
mask [3, 10, 29, 30, 44], bounding box [6, 27, 47, 53, 62], or
keypoint location [26, 36]. (2) the content or “what” component,
often called a “slot vector” zi ∈ RD captures the properties of
the object such as its texture, pose, and affordances, visible in
the scene regions o[li] identified by li.

The Pros and Cons of OCRs. OCRs disentangle scene
objects, enabling improved systematic generalization, symbolic
reasoning, sample-efficient learning, and causal inference
starting from visual inputs [8, 13, 28, 50, 58] compared
to unstructured “flat” vector representations of the scene.
They can also serve as a shared representation interface[22]
between humans and robots, which is potentially useful for task
specification. For example, a system that understands the world
in terms of objects can understand natural instructions such as
“place object-1 upon object-4”. In our approach, we will take
advantage of this interface capability to identify task-relevant
objects in a cluttered scene.

Despite all these potential advantages of OCRs, state-of-the-
art approaches in robot learning today commonly use flat vector
representations of the scene [14, 32, 38, 54, 59]. We argue
that this is primarily because training deep neural networks to
generate object-centric representations is difficult; they require
non-standard architectures, and do not train as stably. This in
turn means that current deep OCR encoders are restricted to be
relatively small-capacity networks that are highly sensitive to
architectural choices [9, 39]. They must therefore be trained on
domain-specific data, and even then, on large image datasets in
relatively small domains. Leave alone re-using pre-trained OCR
encoders in new task domains, state-of-the-art OCR encoders
perform poorly even in-domain in realistic, visually complex
settings [56], as we also find in our experiments.

Thus today’s OCRs trail flat representations in practical
utility. For example, pre-trained flat representation encoders
can enable robot learning in new domains [32, 33, 37, 55].
Indeed, in our attempt to build similarly re-usable pre-trained
OCR encoders, we too will re-use one such flat representa-

tion encoder LIV [33], alongside another pre-trained model
SAM [24], that specializes in segmenting images. We now
briefly discuss these two models.

Segment Anything Model (SAM). Our approach exploits
recent large advances in image instance segmentation [24, 63]
for building an image representation for robotics. Specifically,
our experiments uses the pre-trained SAM [24] model off-
the-shelf, but our approach is more general and permits using
arbitrary future instance segmentation. At inference time, given
an RGB image of size HxWx3, SAM can generate a full
set of segmentation masks {m1,m2, . . . , } that identify pixel
groupings potentially corresponding to object-like entities at
varying levels of granularity.

Language-Image Value (LIV) representations. Our ap-
proach also requires a pre-trained visual encoder that provides
flat scene-level vector representations of images. In our
experiments, we use LIV [33], a vision-language representation
pre-trained on a large human video dataset. The pre-trained
model contains a vision encoder and a language encoder; we
are primarily concerned with the LIV vision encoder, which
has been shown to work well as a state representation for
vision-based robotic tasks in cluttered scenes.

B. Other Related Work

1) Traditional Uses Of Object Detectors In Robotics.: We
have motivated OCRs and discussed recent work on deep
OCRs in Sec A. In a way, our approach of combining pre-
trained models into one OCR encoder without any training
is reminiscent of more traditional and modular approaches to
representing visual scenes in robotics, such as by computing
hand-defined (e.g., SIFT, HOG) features over object detector
outputs [4, 31]. Such approaches have continued to be useful
since the advent of deep learning, e.g., recent works have
employed detectors for object poses [35, 48, 57] and bounding
boxes [6, 27, 47, 53, 62]. Given the abundance of research in
object detection from the computer vision community, those
works either leverage existing object detectors [27, 47, 53]
such as Mask R-CNN [15] or incorporate vision backbones
such as a region proposal network [43] for general object
proposals and then train a policy that attends to the task-
relevant information [6, 62]. However, these methods typically
require fine-tuning on their datasets and require prior knowledge
of object categories thus failing to handle previously unseen
objects. Indeed, the growing literature on unsupervised deep
object-centric representations (OCRs) is motivated by the desire
to move beyond such domain-specific labeled datasets, but has
its own disadvantages, as we motivated in Sec A. Powered by
recent advances in category-agnostic segmentation, we have
proposed a truly “off the shelf”, general-domain OCR that can
be reused by robot learners in arbitrary domains.

2) Pre-trained Flat Representations for Control: As dis-
cussed in Sec A, our work aims to fix the gap between flat
and object-centric representations for control by presenting
a general-domain pre-trained OCR, inspired by the many
such solutions that provide pre-trained flat representations for
control [32, 34, 38, 40, 45, 55]. These works have shown how



RLBench RealRobot

Self-Attention Architecture N/A 4 Heads, 256 Hidden Dimension
MLP Architecture [256, 256] [256, 256]
Non-Linear Activation Leaky ReLU ReLU

Optimizer Adam Adam
Gradient Steps 250000 10000
Batch Size 128 64
Learning Rate 0.0005 0.001
Proprioception Yes No
Augmentation Demo augmentation [19] Random Cropping

TABLE II
Imitation Learning Hyperparameters.

frozen visual representations, pre-trained on out-of-domain data,
can serve as effective visual encoder for policy learning on
unseen robot tasks. However, flat image-level representations
typically lose fine-grained object-centric information that is
often necessary for solving tasks that require multi-object rea-
soning [17] or require training another specialized architecture
on in-domain data for generalization [46].

C. Simulation Experimental Details

Keyframe action representation. Following the setup of
James and Davison [19], we perform keyframe discovery on
over demonstration dataset to reduce the task horizon. Iterating
over each of the demo trajectories τ , we use a Boolean function
to decide whether each trajectory point is a keyframe. The
Boolean function is a disjunction of change in gripper state and
velocities approaching near zero. In our real-world experiment,
we use simpler heuristic to mine keyframe actions.

D. Real Robot Experimental Details

RealRobot Environment. In Figure 6, we show a side view
of the RealRobot environment to better illustrate the position
of the camera that is used for policy learning.

Task Specification. Each task is specified using text descrip-
tion (e.g., apple in green pot), which is natural given
that both SAM-LIV and LIV has access to LIV’s language
encoder to enable language-based task specification. Then, the
language embedding vector is treated as another input vector
to the policy.

Imitation Learning Losses. Besides policy success rates,
we also visualize the BC training and validation losses incurred
during policy learning for SAM-LIV and LIV. In addition, we
consider several SAM-LIV ablations such as removing the
self-attention layer with MLP and reducing the learning rate.
As shown in Figure 5, LIV clearly underfits SAM-LIV, even
though both methods do use the same visual encoder and
differ only in what inputs go through the encoder. The superior
generalization of SAM-LIV, as shown in the validation loss, is
not solely attributed to its improved expressivity. By decreasing
the policy learning-rate by ten-fold, we see that SAM-LIV
(Small LR) does now incur higher training loss than LIV, but

Fig. 5. BC Losses on RealRobot.

still delivers lower validation loss than LIV, demonstrating that
SAM-LIV’s out-of-box generalization capability is robust to
hyperparamter choices. Likewise, SAM-LIV without attention
exhibits higher validation loss, indicating that the lack of
permutation invariance inductive bias hurts generalization due
to sensitivity to noisy mask outputs (Figure 2 shows an example
where the mask output drops certain objects in the scene).

E. More Qualitative Results

Figures 7, 8, 9, 10, and 11 show additional qualitative visu-
alizations of real-robot and simulation demonstration episodes.
The leftmost column is the original RGB image, and the rest
of slot assignments produced by SAM-LIV, with the second
to the left column as background. Each row shows a keyframe
point in the demonstration sequence discovered by our keyframe
discovery procedure (See Appendix C for more details). Figures
12, 13, 14, 15, and 16 show the same demonstration sequences,
but with the slot assignments visualized in one image. The top
row are the RGB images of keyframes, and the bottom row
are the corresponding overlay of SAM-LIV segmentations.

F. Limitations

With regard to limitations, our simulation experiments are
limited in the number of tasks, and most of our tasks resemble



Fig. 6. RealRobot Environment Side View.

some form of pick-and-place motion. However, as our pipeline
does not make assumption on task type, action space, and
policy architecture, we aim to extend to more diverse tasks in
both simulation and real-robot. Another limitation is that the
performance of our pipeline is bottlenecked by the quality of the
individual “what” and “where” foundation models. Furthermore,
SAM-LIV policy inference is slower due to online generation
of our object-centric representation of the current environment
observation. However, these limitations can be addressed by the
steady improvement in the quality of visual foundation models
and by adopting a faster online OCR generation method that
trades-off speed with accuracy.



Fig. 7. Slot assignments breakdown of keyframes in one demonstration episode of RealRobot Apple in Green Pot

Fig. 8. Slot assignments breakdown of keyframes in one demonstration episode of RealRobot Pineapple in Green Pot

Fig. 9. Slot assignments breakdown of keyframes in one demonstration episode of RealRobot Eggplant in Green Pot



Fig. 10. Slot assignments breakdown of keyframes in one demonstration episode of RLBench Pick up Cup

Fig. 11. Slot assignments breakdown of keyframes in one demonstration episode of RLBench Rubbish in Bin



Fig. 12. Object masks overlay of keyframes in one demonstration episode of RealRobot Apple in Green Pot

Fig. 13. Object masks overlay of keyframes in one demonstration episode of RealRobot Pineapple in Green Pot



Fig. 14. Object masks overlay of keyframes in one demonstration episode of RealRobot Eggplant in Green Pot

Fig. 15. Object masks overlay of keyframes in one demonstration episode of RLBench Pick up Cup



Fig. 16. Object masks overlay of keyframes in one demonstration episode of RLBench Rubbish in Bin
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