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Abstract—We study the autonomous exploration task in indoor
environments for the mobile ground robot. We propose a three-
stage exploration strategy: viewpoint generation, viewpoint scor-
ing, and viewpoint selection, to make the algorithm agnostic to the
robot’s planning and control modules. In particular, we propose
the Learning to Explore (L2E) framework, which formulates the
scoring and selection stages as a learning problem that could be
solved by imitation learning (IL) and deep reinforcement learning
(DRL). We use IL to pretrain the exploration policy and an off-
policy DRL method to fine-tune it, improving the sample efficiency
and accelerating the training process. We benchmark both the
heuristic-based viewpoint scoring and selection methods and the
proposed DRL method under the same exploration framework in
realistic diverse indoor environments, and the results show that
the L2E method can achieve 4% ∼ 22% minimum improvement
when compared with baseline exploration approaches.

I. INTRODUCTION

Autonomous exploration is crucial for robots operating in
unknown environments, with applications spanning house-
hold [1, 2, 3] to rescue scenarios [4, 5, 6]. It serves to
guide robots in perceiving and mapping their surroundings,
an essential step for subsequent tasks like localization and
navigation [7, 8]. Our focus lies on indoor autonomous
exploration, where the robot navigates a 2D plane to construct
an occupancy grid map of the environment [9, 10]. Consumer-
grade robots, like Amazon Astro [11], often equipped with
cheaper, narrower field-of-view (FoV) sensors, pose unique
challenges, which our approach can address.

It is still a challenging problem to find an efficient, scalable,
and generalizable exploration framework [12]. The efficiency
is determined by the new information gained from a fixed
budget of resources, such as the exploration area within a
certain amount of time. It is one of the most important metrics
to evaluate the performance of an exploration planner since
better efficiency indicates less exploration time and energy
consumption. The scalability is reflected by the algorithm com-
plexity regarding the explored map size. Poor scalability may
restrict its deployment on the real robot in large environments.
Finally, a generalizable planner should be easily adapted to a
new robotic platform or new environments.

Traditional rule-based methods for indoor robot exploration
are abundant in literature [9, 3]. They employ heuristic-based
cost functions to determine the next navigation goal, but such
heuristics may not generalize well and their greedy nature can

Fig. 1: Exploration framework.

hamper long-term planning [12]. Furthermore, their scalability
can falter in larger environments.

Deep reinforcement learning (DRL) has shown promise
in exploration, teaching robots to interact with the envi-
ronment [13, 14]. These approaches offer scalability and
environment adaptability, but have difficulties in comprehen-
sive environment coverage and require extensive training
data [15, 16]. Direct utilization of robot movement in the action
space limits transferability across robotic platforms [17, 18].

We propose the exploration framework shown in Fig. 1 to
address these challenges. The localization and mapping module,
the planning and control module, and the viewpoints generation
module are rule-based and robot-dependent, while the view-
points scoring and selection modules are robot-agnostic because
the inputs and outputs can share the same representation across
different platforms. We propose the Learning to Explore (L2E)
method, which includes a pretraining phase with imitation
learning, and a fine-tuning phase where DRL is utilized to
further improve the performance. Our contributions include:

• Proposing the L2E method, which combines rule-based
and learning-based techniques for efficient, scalable, and
generalizable indoor exploration.

• Framing autonomous exploration as a learning problem
with a safe, feasible action space and model architecture,
accelerated by IL pretraining and refined through DRL
fine-tuning for optimal performance.

• Evaluating our approach against rule-based baselines in
varied indoor environments using a narrow-FoV robot,
showing significant improvements over baselines, particu-
larly in complex scenarios.



II. METHOD

As shown in Fig. 1, the learning to explore (L2E) method
consists of the viewpoints generation phase, the viewpoints
scoring phase, and the viewpoints selection phase. We propose
a rule-based method to generate candidate viewpoints that
are guaranteed to be navigable. The downstream scoring and
selection modules are robot-agnostic.

A. Viewpoints generation

Our viewpoint generation module starts by detecting frontiers,
the boundaries between known and unknown spaces, using a
wavefront detector (WFD(P,M)) [19]. Rather than waiting for
complete frontier detection, we generate viewpoints concur-
rently with frontier discovery.

While clustering the frontier F , we incrementally compute
and cache the midpoint F.midpoint to efficiently constrain the
search space, as this typically offers the most information gain.
A Breadth-First Search from the midpoint is then initiated,
calculating a frontier viewpoint that expands outwards towards
known space across navigable cells. This search proceeds until
a valid cell is identified, based on the following criteria:

• The cell is sufficiently distanced from obstacles and the
frontier itself, ensuring we avoid obstacles and impasses.

• The cell maintains a line-of-sight to the frontier, ensuring
an increment in the explored area post-navigation.

Upon locating a viewpoint v that fulfills these criteria, it’s added
to the viewpoint set V , and the viewpoint for the subsequent
frontier is computed. This module’s operation on the high-
level occupancy grid map and validation of line-of-sight to the
frontier allows generalization to different sensor configurations
and ranges, provided they generate the same occupancy grid
map and can compute a line-of-sight to the frontier.

B. State space representation

Our approach formulates exploration as a learning problem
using state representation easily digestible by neural networks.
We adopt the occupancy grid, common in indoor robot
state representation [20, 21]. It employs rasterized image
representation akin to self-driving tasks [22, 23, 24, 25, 26].
This uses a fixed-size RGB image, encompassing all necessary
task information. Fig. 2a shows various cells: white for free
space, black for unknown, teal for obstacles, and purple for
frontiers. Robot and viewpoints are depicted with red and
blue circles respectively. We supplement the rasterized image
with a robot feature vector and viewpoints’ feature vectors.
The compact and informative state representation allows us to
facilitate the model training procedure.

C. Action space and reward function design

Different from previous learning-based methods that directly
output the robot’s action or predict the next viewpoint [17,
18, 16, 10], we adopt a discrete action space that includes
all the candidate viewpoints from the generation phase. The
exploration planner selects a viewpoint from the pre-generated
ones as the next navigation goal at each decision time.

We argue that the proposed action space choice has four
major benefits: 1) the output of the learning exploration policy
is always safe and feasible, i.e., the robot will not collide with
obstacles or navigate to invalid positions; 2) the performance
of the learned exploration strategy is lower-bounded, 3) the
learned exploration strategy is robot-agnostic, i.e., it could
be easily transferred to another robot platform with different
sensor configurations or navigation modules; 4) the training
efficiency could be greatly improved, i.e., the learning agent
can use fewer interaction samples and less training time
to converge when compared to previous DRL methods that
use continuous action spaces [15]. We enjoy the first three
benefits because the viewpoints are validated to be navigable
in the viewpoint generation phase by considering the robot
configurations, therefore, any choices from the learning policy
should be feasible and can obtain new information. The last
benefit comes from the compressed action space from the entire
exploration area to a fixed number of candidate viewpoints,
which avoids additional training to figure out feasible and
informative actions.

We use the difference of the explored area between two
decision time steps as the reward function, which is straightfor-
ward. The reward signal indicates the new information gained
by selecting the viewpoint.

D. Model architecture

The proposed model architecture for our state and action
spaces is depicted in Fig. 2b. The rasterized image, resized
to 3 × 224 × 224, is processed by a Convolutional Neural
Network (CNN) encoder with multi-stage pooling to derive
a condensed image feature vector. This vector represents the
global information of the entire exploration map. The CNN
backbone utilizes the EfficientNet-B0 model [27].

The model must manage variable numbers of viewpoint
features and maintain output invariance irrespective of view-
point feature input order. We address this by borrowing the
scoring net concept from trajectory prediction [22, 26], which
can accommodate fluctuating viewpoint quantities. The world
feature vector, a concatenation of the image and robot features,
encodes the exploration task’s global information. This vector
is then repeated K times and combined with each of the K
viewpoint feature vectors. Here, K is the count of candidate
viewpoints, each representing local information. Subsequently,
the K feature vectors are fed through 2× 512 hidden layers
with ReLU activation to generate K scores, each linked to
a corresponding viewpoint. Notably, this design treats the K
dimension as a batch input to the network, resulting in order-
invariant outputs capable of handling varying viewpoints. The
policy head’s scores are normalized using softmax to determine
the probability of selecting each viewpoint.

E. Model training

The policy training has two stages: 1) using imitation
learning (IL), particularly Behavior Cloning (BC) [28] in this
work, to initialize the CNN encoder and 2) using DRL for fine-
tuning. In the IL pretraining phase, we adopt the nearest frontier
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Fig. 2: Overview of the rasterized image representation and the model architecture.

(NF) planner that we will introduce in Sec. III-A as the expert
policy to collect exploration demonstrations, i.e., sequences of
state-action pairs. Then we train the policy network based on
the behavior cloning loss function [28]. After IL training, we
use the pretrained encoder for the DRL agent and randomly
initialize the fully connected layers for the policy and value
function heads. We only use the pretrained encoder to prevent
the converged IL policy from being trapped to a local optimum.

We use the Soft-Actor-Critic (SAC) [29, 30] method to
fine-tune the policy model in the second stage. Since SAC
is off-policy, i.e., reusing the data in the replay buffer, it has
better sample efficiency than previous on-policy DRL-based
autonomous exploration methods [15, 16].

III. EXPERIMENTS

A. Baselines

We compare the proposed L2E approach with four rule-based
exploration methods that are commonly used in the literature
[15, 31, 16]. To fairly compare them, we implement all the
baselines under the same exploration framework as shown in
Fig. 1, where the viewpoints generation stage is the same while
the scoring and selection stages are different. The decision
frequency is 1Hz for all methods. Denote V as the set of
viewpoints. We detail each baseline as follows.

Nearest Frontier (NF). The NF planner scores each
candidate viewpoint v based on the navigation distance from
the robot D(v), which is computed by the A* path planning
algorithm, and then greedily selects the closest one as the next
navigation goal: v∗ = argmaxv∈V(−D(v)).

Information Gain (IG). The IG planner scores each
candidate viewpoint based on the associated frontier cluster’s
size I(v), i.e., the number of corresponding frontier points. It
greedily selects the one with the highest information gain as
the next navigation goal: v∗ = argmaxv∈V I(v).

Hybrid Nearest Frontier and Information Gain (NF +
IG). The NF + IG planner scores each candidate viewpoint
based on a weighted combination of the navigation distance and
the information gain score(v) = λI(v)−D(v), where λ is a
weighting parameter. It greedily selects the one with the highest
score as the next navigation goal: v∗ = argmaxv∈V score(v).
We empirically conduct experiments to tune λ and observe
that λ = 20 performs best on average.

Random Sample (RS). The RS planner randomly selects a
viewpoint v ∈ V as the next navigation goal.

Learning-based baselines are not considered in this work
because their implicit assumptions of the environment setup can
hardly be directly applied to our commercialized experimental
platforms. In addition, a recent work suggests that above
rule-based methods can achieve comparable or even better
performance than existing learning-based ones [12].

B. Experiment setup

Simulation environments. We evaluate all methods within
Gazebo simulation environments, offering varying degrees of
complexity. As depicted in Fig. 3 (a) and (b), we employ
two common empty home layouts as foundational testing
environments. Fig. 3 (c) - (e) illustrates three fully fur-
nished home layouts, serving as more challenging testing
environments. These furnished environments better reflect the
practical challenges associated with indoor exploration tasks
than previous unfurnished scenarios [10, 32, 12], ensuring
a comprehensive assessment of exploration strategies. All
simulations are conducted in real-time.

Evaluation metric. We assess exploration efficiency by
measuring the total explored area within a predetermined time
frame, the duration of which is dependent on the environment
size. Specifically, we allow 60s for Empty home 1, 300s for
Empty home 2 and Furnished home 1, 250s for Furnished
home 2, and 200s for Furnished home 3.

It is noteworthy that a trained L2E policy can be transferred
across robotic platforms. This is because the action space
represents high-level navigation goals, rather than specific
motor commands, meaning that the low-level planning and
execution modules are decoupled from the exploration strategy.

C. Results and analysis

We demonstrate the generalization capability of L2E by
training it on the Furnished home 2 map and testing the
resulting policy in all environments. Table I presents the results,
with each row representing one home layout. The area column
signifies the explored area within a fixed exploration time—the
higher, the better. Our approach consistently surpasses all
baselines, with the improve column under each baseline
highlighting the degree of improvement afforded by L2E
relative to that method. The last column (minimum improve)
denotes the efficiency enhancement achieved by L2E relative
to the most formidable rule-based baseline.

The experiments yield several intriguing observations. Firstly,
L2E exhibits more substantial efficiency improvements in
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Fig. 3: Illustration of the maps.

TABLE I: Comparison between L2E (our method) and other baselines. For each baseline method, the first column (area) is the exploration
area given a fixed exploration time, which is the higher, the better; the second column (improve) is the improvement of our L2E method w.r.t
this baseline approach. The last column is the minimum improvement against the strongest rule-based baseline.

Nearest Frontier (NF) Information Gain (IG) NF + IG (λ = 20) Random Sample (RS) L2E (ours) Minimum
improvearea (m2) improve area (m2) improve area (m2) improve area (m2) improve area (m2)

Empty home 1 36.33 7.51% 26.87 45.37% 34.55 13.05% 28.29 38.07% 39.06 7.51%
Empty home 2 195.27 7.03% 157.00 33.00% 200.95 4.01% 86.07 142.83% 209.00 4.01%

Furnished home 1 61.27 40.71% 69.76 23.58% 70.45 22.37% 29.86 188.71% 86.21 22.37%
Furnished home 2 73.29 14.97% 70.48 19.55% 71.44 17.95% 35.65 136.35% 84.26 14.97%
Furnished home 3 86.46 32.55% 74.09 54.68% 94.77 20.92% 50.95 124.93% 114.60 20.92%

complex environments. This is evident from the larger minimum
improvements recorded in furnished environments relative to
simpler ones, underlining L2E’s potential in managing complex
real-world scenarios. Secondly, despite being trained in a
single map layout, L2E displays commendable generalization
across different environments. Finally, no rule-based method
consistently outperforms others across all environments. While
the NF planner fares best among the baselines in the Empty
home 1 and Furnished home 2 environments, the hybrid NF +
IG exploration strategy prevails in the remaining environments.
This suggests that strategies based on greedy viewpoint
selection using meticulously hand-tuned cost functions may
not generalize to all scenarios, whereas our learned policy,
trained in one environment with a simple and intuitive reward
function, consistently outperforms all baselines.

Fig. 4: Training curves in the Furnished home 2 environment.
Fig. 4 shows the training curve of our method and the

performance of baseline approaches in the Furnished home
2 environment. From the initial values, we can observe that
the performance after IL training is still worse than rule-based
ones. However, after a few training epochs, the performance
of L2E it quickly surpasses the baselines’. Note that each
training epoch corresponds to around 4 minutes of interaction
data, which shows the great sample efficiency of the proposed
exploration framework and the training algorithm.

Our proposed exploration architecture has full coverage
guarantees because of our action space design – it can complete
the exploration in a closed indoor environment given enough
time. In addition, the entire training procedure is collision-
free and safe for the learning robot, because the viewpoint
generation phase in Sec. II-A is guaranteed to provide navigable
and safe viewpoint candidates. Note that the completeness and
safety properties can hardly be achieved by the DRL approaches
in the literature.

TABLE II: Ablation study by removing features in L2E.

Empty
home 1

Empty
home 2

Furnished
home 1

Furnished
home 2

Furnished
home 3

full algorithm 39.06 209.00 82.62 84.26 114.60
no pretraining 38.41 201.04 71.03 74.73 107.83

no entropy 35.81 199.81 63.95 74.25 98.75

We also conduct an ablation study of the L2E method by
removing the IL pretraining phase or the maximum entropy
objective respectively. The result is shown in Table II, where
each number corresponds to the explored area. We can see that
both the pretraining phase and the entropy term are crucial in
learning an efficient exploration policy. Particularly, the entropy
term plays a more important factor because it can prevent the
policy from being trapped into a local optimum and stopping
to explore other more rewarding actions.

IV. CONCLUSION
We propose the learning to explore (L2E) method for

indoor autonomous exploration applications. By utilizing a
decoupled three-stage exploration framework, we can handle
different robot configurations in the viewpoint generation
phase, and provide safe and feasible viewpoint candidates
for the learning agent as the action space to choose. We show
that the proposed method consistently outperforms rule-based
exploration strategies in diverse indoor scenarios, showing the
advantages of the L2E approach.
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