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Abstract—Prediction-based active perception has shown the
potential to improve the navigation efficiency and safety of the
robot by anticipating the uncertainty in the unknown environ-
ment. The existing works for 3D shape prediction make an
implicit assumption about the partial observations and therefore
cannot be used for real-world planning and do not consider
the control effort for next-best-view planning. We present Pred-
NBV, a realistic object shape reconstruction method consisting
of PoinTr-C, an enhanced 3D prediction model trained on the
ShapeNet dataset, and an information and control effort-based
next-best-view method to address these issues. Pred-NBV shows
an improvement of 25.46% in object coverage over the traditional
methods in the AirSim simulator, and performs better shape
completion than PoinTr, the state-of-the-art shape completion
model, even on real data.

I. INTRODUCTION

The goal of this paper is to improve the efficiency of
mapping and reconstructing an object of interest with a mobile
robot. This is a long-studied and fundamental problem in the
field of robotics [1]. In particular, the commonly used approach
is Next-Best-View (NBV) planning. In NBV planning, the
robot seeks to find the best location to go to next and obtain
sensory information that will aid in reconstructing the object
of interest. A number of NBV planning approaches have been
proposed over the years [2]. In this paper, we show how to
leverage the recent improvements in perception to improve the
efficiency of 3D object reconstruction with NBV planning. In
particular, we present a 3D shape prediction technique that
can predict a full 3D model based on the partial views of the
object seen so far by the robot to target the next best view.
Notably, our framework works “in the wild” by eschewing
some common assumptions made in 3D shape prediction,
namely, assuming that the partial views are still centered at
the full object center.

There are several applications where robots are being used
for visual data collection. Some examples include inspection
for visual defect identification of civil infrastructure such as
bridges [3], [4], ship hulls [5] and aeroplanes [6], digital
mapping for real estate [7], [8], and precision agriculture [9].
The key reasons why robots are used in such applications
are that they can reach regions that are not easily accessible
to humans and we can precisely control where the images
are taken from. However, existing practices for the most part
require humans to specify a nominal trajectory for the robots
that will visually cover the object of interest. Our goal in this
paper is to automate this process.
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Fig. 1: Overview of the proposed approach

The NBV planning method is the commonly used approach
to autonomously decide where to obtain the next measurement
from. NBV planning typically uses geometric cues such as
symmetry [10] or prior information [11] for deciding the
next best location. In this work, we do not rely on such
assumptions but instead leverage the predictive power of deep
neural networks for 3D shape reconstruction.

Recent works have explored predictions as a way of im-
proving these systems by anticipating the unknowns with
prediction and guiding robots’ motion accordingly. This ap-
proach has been studied for robot navigation, exploration, and
manipulation [12]–[15] with the help of neural network-based
methods that learn from datasets. While 2D map presentation
works have shown the benefits of robotic tasks in simulation as
well as the real-world, similar methods for 3D prediction have
been limited to simplistic simulations. The latter approaches
generally rely on synthetic datasets due to the lack of realistic
counterparts for learning.

Strong reliance on data results in the neural network learn-
ing implicit biases, such as applicability to specific objects [16]
and implicit knowledge of the object’s center, despite being
partially visible [17]. These situations are invalid in real-
world, mapless scenarios and may result in inaccurate shape
estimation. Many shape prediction works assume the effortless
motion of the robot [18], whereas an optimal path for a
robot should include the control effort required to reach a
position, as well as the potential information gain due to
time and power constraints. Monolithic end-to-end trainable
neural networks proposed for NBV planning lack transparency,
critical to the safety of humans sharing the workspace. These
approaches also tend to be specific to training datasets and
require extensive finetuning for real-world deployment.

To make 3D predictive planning more realistic, efficient,
and safe, we propose a method consisting of a 3D point cloud
completion model, that relaxes the assumption about implicit



knowledge of the object’s center using a curriculum learning
framework [19], and an NBV framework, that maximizes the
information gain from image rendering and minimizes the
distance traveled by the robot. Furthermore, our approach is
modular making it interpretable and easy to upgrade.

We make the following contributions to this work:
• We use curriculum learning to build an improved 3D

point cloud completion model, which does not require the
partial point cloud to be centered at the full point cloud’s
center and thus is more robust than earlier models. We
show that this model, termed PoinTr-C, outperforms the
base model, PoinTr [17], by at least 23.06%.

• We propose a next-best-view planning approach that
performs object reconstruction without any prior infor-
mation about the geometry, using predictions to optimize
information gain and control effort over a range of objects
in a model-agnostic fashion.

• We show that our method covers on average 25.46%
more points on all models evaluated for object reconstruc-
tion in simulations compared to the non-predictive base-
line approach, Basic-Next-Best-View [20] and performs
even better for complex structures like airplanes.

We share more qualitative results, including for real point
cloud, from our method on our project website 1

II. RELATED WORK

Active reconstruction in an unknown environment can be
accomplished through NBV planning, which has been studied
by the robotics community for a long time [1], [21], [22].
In this approach, the robot builds a partial model of the
environment based on observations and then moves to a new
location to maximize the cumulative information gained. The
NBV approaches can be broadly classified into information-
theoretic and geometric methods. The former builds a prob-
abilistic occupancy map from the observations and uses the
information-theoretic measure [2] to select the NBV. The latter
assumes the partial information to be exact and determines the
NBV based on geometric measures [23].

The existing works on NBV with robots focus heavily on
information-theoretic approaches for exploration in 2D and 3D
environments [24], [25]. Subsequent development for NBV
with frontier and tree-based approaches was also designed
for exploration by moving the robot towards unknown re-
gions [26]–[29]. Prior works on NBV for object reconstruction
also rely heavily on information-theoretic approaches to reduce
uncertainty in pre-defined closed spaces [30], [31]. Geometric
approaches require knowing the model of the object in some
form and thus have not been explored to a similar extent. Such
existing works try to infer the object geometry from a database
or as an unknown closed shape [32], [33], and thus may be
limited in application.

In recent years, prediction-based approaches have emerged
as another solution. One body of these approaches works
together with other exploration techniques to improve ex-
ploration efficiency by learning to predict structures in the

1Project Webpage: https://raaslab.org/projects/PredNBV

environment using only a partial observation of the environ-
ment. The idea behind this approach is to learn the common
structures in the environment (buildings and furniture, for
example) from extensive datasets. This approach has gained
traction in recent years and has been shown to work well
for mobile robots with 2D occupancy map representations for
indoor navigation [12]–[14], [34], exploration [13], high-speed
maneuvers [35], and elevation mapping [36], [37].

Similar works on 3D representations have focused mainly
on prediction modules. Works along this line have proposed
generating 3D models from novel views using single RGB
image input [38], depth images [39], normalized digital surface
models (nDSM) [40], point clouds [17], [41], [42], etc. The
focus of these works is solely on inferring shapes based on
huge datasets of 3D point clouds [43]. They do not discuss
the downstream task of planning. A key gap missing in these
works is that they assume a canonical representation of the
object, such as the center of the whole object, to be provided
either explicitly or implicitly. This assumption does not work
well in the real world, where the center of the partial object
may not be estimated accurately, leading to a gap in the
adoption of such models for prediction-driven planning.

Another school of work using 3D predictions combines
the perception and planning modules in the form of a neural
network. These works focus on predicting the NBV to guide
the robot, given partial observations. Such methods have been
developed for simple objects [44], 3D house models [45], and a
variety of objects [46] ranging from remotes to rockets. Peralta
et al. [45] propose a reinforcement-learning framework, which
can be difficult to implement due to sampling complexity
issues. The supervised-learning approach proposed by Zeng et
al. [46] predicts the NBV using a partial point cloud, but the
candidate locations must lie on a sphere around the object,
restricting the planning space. Monolithic neural networks
also suffer from a lack of transparency and real-world de-
ployment may require fine-tuning beyond just changing a few
hyperparameters. Prediction-based modular approaches solve
these problems as the intermediate outputs are available for
interpretation and the prediction model can be plugged in with
the preferred planning method for a real environment.

A significant contribution of our work is to relax the implicit
assumption used in many works that the center and the canon-
ical orientation of the object under consideration are known
beforehand, even if the 3D shape completion framework uses
partial information as the input. A realistic inspection system
may not know this information and thus the existing works
may not be practically deployable.

III. PROBLEM FORMULATION

We are given a robotic agent with a 3D sensor onboard
that explores a closed object with volume V ∈ R3. The set of
points on the surface of the object is denoted by S ∈ R3. The
robot can move in free space around the object and observe
its surface. The surface of the object si ⊂ S perceived by the
3D sensor from the pose ϕi ⊂ Φ is represented as a voxel-
filtered point cloud. We define the relationship between the set
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of points observed from a view-point ϕi with a function f , i.e.,
si = f(ϕi). The robot can traverse a trajectory ξ consisting
of view-points {ϕ1, ϕ2, . . . , ϕm}. The surface observed over a
trajectory is the union of surface points observed from the
consisting viewpoints, i.e. sξ =

⋃
ϕ∈ξ f(ϕ). The distance

traversed by the robot between two view-points ϕi and ϕj

is denoted by d(ϕi, ϕj).
Our objective is to find a trajectory ξi from the set of all

possible trajectories Ξ, such that it observes the whole voxel-
filtered surface of the object while minimizing the distance
traversed.

ξ∗ = argmin
ξ∈Ξ

|ξ|−1∑
i=1

d(ϕi, ϕi+1), such that
⋃
ϕi∈ξ

f(ϕi) = S

In unseen environments, S is not known apriori, hence the
optimal trajectory can not be determined. We assume that the
robot starts with a view of the object. Else, we can always first
explore the environment until the object of interest is visible.

IV. PROPOSED APPROACH
We propose Pred-NBV, a prediction-guided NBV method

for 3D object reconstruction highlighted in Figure 1. Our
method consists of two key modules: (1) PoinTr-C, a robust
3D prediction model that completes the point cloud using
only partial observations, and (2) a NBV framework that uses
prediction-based information gain to reduce the control effort
for active object reconstruction. We provide the details of these
constituents in the following subsection.
A. PoinTr-C: 3D Shape Completion Network

Given the current set of observations vo ∈ V , we predict
the complete volume using a learning-based predictor g, i.e.,
V̂ = g(vo). To obtain V̂ , we use PoinTr [17] network which
uses 3D point clouds as the input and output. PoinTr uses
a combination of the k-nearest neighbor (kNN) algorithm,
DGCNN [47], transformer [48], and FoldingNet [49] to effi-
ciently capture and predict the geometric structure and fill the
missing point cloud. PoinTr was trained on the ShapeNet [43]
dataset and outperforms the previous methods on a range of
objects. However, it was trained with implicit knowledge of
the center of the object. Moving the partially observed point
cloud to its center results in incorrect prediction from PoinTr.

To improve predictions, we fine-tune PoinTr using curricu-
lum framework, which dictates training the network over easy
to hard tasks by increasing the learning difficulty in steps [19].
Specifically, we fine-tune PoinTr over increasing perturbations
in rotation and translation to the canonical representation of
the object to relax the assumption about implicit knowledge of
the object’s center. We use successive rotation-translation pairs
of (25◦, 0.0), (25◦, 0.1), (45◦, 0.1), (45◦, 0.25), (45◦, 0.5),
(90◦, 0.5), (180◦, 0.5), and (360◦, 0.5) for this. We assume
that the object point cloud is segmented well using distance-
based filters or segmentation networks [50].

B. Next-Best View Planner
Given the predicted point cloud V̂ for the robot after

traversing the trajectory ξt, we generate a set of candidate
poses C = {ϕ1, ϕ2, ..., ϕm} around the object observed so far.

Given vo, the observations so far, we define the objective to
select the shortest path that results in observing at least τ% of
the maximum possible information gain over all the candidate
poses. Considering V̂ as an exact model, we use a geometric
measure to quantify the information gained from the candidate
poses. Specifically, we define a projection function I(ξ), over
the trajectory ξ, which first identifies the predicted points
distinct from the observed point cloud over the trajectory, then
apply a hidden point removal operator on them [51], without
reconstructing a surface or estimating a normal, and lastly,
find the number of points that will be observed if we render
an image on the robot’s camera. Thus, we find the NBV from
the candidate set C as follows:

ϕt+1 = argmin
ϕ∈C

d(ϕ, ϕt), such that
I(ξt ∪ ϕ)

maxϕ∈C I(ξt ∪ ϕ)
≥ τ

We find the d(ϕi, ϕj), using RRT-Connect [52], which in-
crementally builds two rapidly-exploring random trees rooted
at ϕi and ϕj through the observed space to provide a safe
trajectory. After selecting the NBV, the robot follows this
trajectory to reach the prescribed viewpoint. We repeat the
prediction and planning process until the ratio of observations
in the previous step and current step is higher or equal to τ .

To generate the candidate set C, we first find the distance
dmax of the point farthest from the center of the predicted
point cloud V̂ and z-range. Then, we generate candidate poses
on three concentric circles: one centered at V̂ with radius 1.5×
dmax at steps of 30◦, and one 0.25×z-range above and below
with radius 1.2× dmax at steps of 30◦. We use τ = 0.95 for
all our experiments.

V. EVALUATION

In this section, we present results on the evaluation of
the Pred-NBV pipeline and discuss the performance of the
individual modules against respective baseline methods. The
results show that Pred-NBV is able to outperform the baselines
significantly using large-scale models from the Shapenet [43]
dataset and with real-world 3D LiDAR data.

A. 3D Shape Prediction
1) Setup: We fine-tune PoinTr-C on an Nvidia GeForce

RTX 2080Ti GPU over the ShapeNet [43] dataset, with per-
turbation applied as described in Section IV. Similar to PoinTr,
we use permutation-invariant metrics Chamfer distance (CD)
and Earth Mover’s Distance as the loss function for training,
as suggested in Fan et al. [53]. For evaluation, we use two
versions of Chamfer distance: CD-l1 and CD-l2, which use
L1-norm and L2-norm, respectively, to calculate the distance
between two sets of points. We also use the F-score to quantify
the percentage of points reconstructed correctly [54].

2) Results: Table I summarizes our findings on the presence
and absence of the perturbations. We find that PoinTr-C outper-
forms the baseline in both scenarios. It only falters in CD-l2 for
ideal conditions, i.e., no augmentation. Furthermore, PoinTr-
C doesn’t undergo large changes when the augmentations are
introduced, making it more robust than baseline. The relative
improvement is at least 23.05% (F-Score) with PoinTr-C.



Fig. 2: Comparison between Pred-NBV and the baseline NBV algorithm [20] for a C-17 airplane.

TABLE I: Comparison between the baseline model (PoinTr)
and PoinTr-C over test data with and without perturbation.
Arrows show if a higher (↑) or a lower (↓) value is better.

Perturbation Approach F-Score ↑ CD-l1 ↓ CD-l2 ↓

✗
PoinTr [17] 0.497 11.621 0.577
PoinTr-C 0.550 10.024 0.651

✓
PoinTr [17] 0.436 16.464 1.717
PoinTr-C 0.550 10.236 0.717

We provide a qualitative comparison and visualizations of
the predictions from the two models for various objects under
perturbations on our project webpage due to lack of space.
The webpage presents prediction results and comparisons with
PoinTr over a variety of objects from the ShapeNet dataset and
for a real point cloud of a car obtained with LiDAR.

B. Next-Best-View Planning

1) Setup: We use Robot Operating System (ROS) Melodic
and AirSim [55] on Ubuntu 18.04 for simulations. We
equipped the virtual UAV with a depth camera and an RGB
camera. AirSim’s built-in image segmentation is used to
segment out the target object from the rest of the environment
in the depth image. This segmented depth image was then
converted to a point cloud. We use the MoveIt [56] software
package based on the work done by Köse [57] to implement
the RRT connect algorithm. MoveIt uses RRT connect and the
environmental 3D occupancy grid to find collision-free paths
for point-to-point navigation.

2) Qualitative Example: We evaluate Pred-NBV on 20
objects from 5 ShapeNet classes representing larger shapes
that can be targeted for inspection: airplane, rocket, tower,
train, and watercraft. Figure 2 shows the path followed by
the UAV as given by Pred-NBV for the C-17 airplane sim-
ulation in AirSim [58]. There are non-target obstacles in the
environment, such as a hangar and air traffic control tower.
Pred-NBV finds a collision-free path that selects viewpoints
targeting maximum coverage of the plane. We create candidate
poses on three concentric rings at different heights around the
center of the partially observed point cloud. The candidate
poses a change as more of the object is visible. As shown in
Figure 2, Pred-NBV is able to observe more points than the
NBV planner without prediction in the same time budget.

3) Comparison with Baseline: We compare the perfor-
mance of Pred-NBV with a baseline NBV method [20]. The

baseline method selects poses based on frontiers in the ob-
served space using occupancy grids. We modified the baseline
to improve it for our application and make it comparable to
Pred-NBV. The modifications include using our segmentation
for the occupancy grid so that frontiers are weighted toward the
target object. We also set the orientation of the selected poses
towards the center of the target object similar to how Pred-
NBV works. The algorithms had the same stopping criteria;
if the previous steps total points observed is greater than
95% of the current steps total points observed, the algorithm
terminates. We can see in Table II that our method observes
on average 25.46% more points than the baseline for object
reconstruction across multiple models from various classes. In
Figure 2, we show that Pred-NBV observes more points per
step than the baseline while not flying further per each step.

TABLE II: Points observed by Pred-NBV and the baseline
NBV method [20] for all models. A detailed table is available
at the project webpage.

Class Number of Points Seen Points Seen ImprovementModels Pred-NBV Baseline

Airplane 5 10706.5 7840.2 31.78%
Rocket 5 1771.0 1579.4 13.87%
Tower 5 3719.8 2762.6 27.75%
Train 2 3983.0 3691.5 7.64%
Watercraft 3 6063.0 3948 42.32%

VI. CONCLUSION

We propose a realistic and efficient planning approach for
robotic inspection using learning-based predictions. Our ap-
proach fills the gap between the existing works and the realistic
setting by proposing a curriculum-learning-based point cloud
prediction model, and a distance and information gain aware
inspection planner for efficient operation. Our approach is able
to outperform the baseline approach in observing the object
surface by 25.46% and provides satisfactory results for real-
world point cloud data.

In this work, we use noise-free observations but show that
Pred-NBV has the potential to work well on real, noisy inputs.
In future work, we will explore making the prediction network
robust to noisy inputs and with implicit filtering capabilities.
We used a geometric measure for NBV in this work and will
extend it to information-theoretic measures using an ensemble
of predictions and uncertainty extraction [59] in future work.

https://raaslab.org/projects/PredNBV/
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