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Abstract—Humans are able to use navigational behaviours such
as follow the corridor or turn right to represent directions and
spatial information. Inspired by this, we explore how to incorpo-
rate behaviours into robot representations. We propose behaviour
graphs, a topological representation in which nodes represent
coarse locations, and edges represent behaviours used to transit
between nodes. These graphs contain semantic labels of places
along with contextual information in the form of robot-specific
behaviours, and do not depend on metric information. We observe
that navigational behaviours can be naturally inferred from
second-hand descriptions of the world that may be abstract or
inaccurate - e.g. floor-plans, hand-drawn maps. Thus we propose
to construct such graphs through ‘map-reading’, leveraging the
abundance of second-hand maps of manmade environments. We
assemble a navigation system that uses such inferred behaviour
graphs, and test its navigation performance on a real robot.

I. INTRODUCTION

How might we direct a friend to our new apartment inside
a building they have never been in? We might easily imagine
instructing them as such: “After the foyer turn left, go straight
down the corridor, take a right turn, then go to the door at the
end.” This scenario highlights how humans can rely on nav-
igational behaviours such as corridor-following (“go straight
down the corridor”) or turning (“take a right turn”) to represent
directions and spatial information. These behaviours can be
concretely characterised as navigation policies that are capable
of collision avoidance, while also exploiting navigational
affordances in the environment - e.g. by recognising paths that
can be followed, or turns that can be made. Inspired by this
behavioural representation, we explore how behaviours can
be encoded in robot representations, and consider the utility
they bring. In particular, we build on recent work in visual
navigation implementing navigational behaviours with neural
networks [9, 10, 1] and consider how such behaviours can
influence the design of robot representations for navigation.

Since navigational behaviours are discrete, symbolic ac-
tions, encoding them into robot representations can enable
us to create state-action representations that not only capture
possible states in the environment, but the action-induced tran-
sitions between them. Such representations effectively mem-
oise the sequence of high-level actions needed to complete
each navigation task, simplifying motion planning compared to
traditional state-only representations that require actions to be
computed on-the-fly. Also, such representations could capture
paths as human-interpretable directions, since navigational be-
haviours are often trained to align with human-like behaviours.

Using navigational behaviours can reduce dependence on
metric information. Most robot systems rely on detailed and

accurate metric SLAM maps to find feasible paths and localise.
Building accurate maps over large scales remains a challenge
for SLAM [2]. Navigational behaviours can help to sidestep
this issue in two ways. Firstly, they are often able to generate
collision-avoiding actions from visual input, without needing
geometric reconstructions of the environment. Secondly, they
can implicitly capture structural information about the envi-
ronment, much like how the directions in the above scenario
capture the building’s topology and layout. Behaviour-based
representations could potentially contain sufficient structural
information to enable localisation without metric information.

Most crucially, navigational behaviours are a form of con-
textual scene information that can be extracted not just from
direct experience of the environment, but also from second-
hand descriptions of it. For instance, humans can infer the
behaviours needed to reach a goal in a novel environment
from natural language directions or floor-plans, all before
stepping foot into the environment. Robots that use navi-
gational behaviours can capitalise on the wealth of second-
hand descriptions of manmade environments - ranging from
satellite maps to abstract maps like floor-plans - to construct
representations for navigating in hitherto unseen areas.

To realise these possibilities and investigate the practicality
of such behaviour-based representations, we consider 3 ques-
tions: (1) What form should a behaviour-based representation
take? (2) How can we generate this representation? (3) How
can this representation be employed for navigation tasks?

To address (1), we formulate a semantic-contextual be-
haviour graph representation that represents a set of key
places in the environment, with directed edges indicating
connectivity between them. Select nodes may contain semantic
labels related to the location they represent, while the edges
also capture contextual, robot-specific action affordance infor-
mation. Specifically, each edge is labelled with the specific
navigational behaviour required to transit between the end-
point nodes. In our implementation, we draw the navigational
behaviours from the behaviour set proposed in Ai et al. [1]. For
(2), we propose a learnable ‘map-reading’ pipeline that can be
trained to extract behaviour graphs from commonly available
top-down 2D ‘maps’ of the environment. In particular, we
consider both metrically accurate ‘maps’ like satellite maps,
as well as abstract and inaccurate ‘maps’ such as floor-plans
and hand-drawn maps. To answer (3), we address how to plan
and localise using behaviour graphs. Planning to a goal node
in the graph can be achieved with graph search, and we adapt
Graph Localisation Networks [3] to localise with respect to



the behaviour graph.
We broadly observe from our experiments that behaviour

graphs can be extracted from a variety of different ‘map’ types
with reasonable accuracy. More importantly, we find that these
noisy behaviour graphs inferred with our ‘map-reading’ can be
employed for effective navigation on a real robot system.

II. RELATED WORK

A. Navigational behaviours

Recent visual navigation methods have built neural networks
capable of steering robots towards a specified goal using only
visual input [11]. Such works implicitly encode the environ-
ment in their weights, hindering generalisation to novel areas.
Sorokin et al. [10] instead build navigational behaviours,
capturing semantically meaningful actions like sidewalk- or
path-following that can generalise across environments. How-
ever, a single behaviour can only reach a limited subset of
goals in the environment - to cover most possible goals, a
set of behaviours is needed. In this vein, Sepulveda et al.
[9], Codevilla et al. [4], Ai et al. [1] propose various sets
of navigational behaviours for reaching goals in indoor and
outdoor environments. While many works tackle the imple-
mentation of navigational behaviours, encoding information
in representations with behaviours is less explored.

B. Robot representations

Modern robot representations are often explored in the
context of SLAM, and usually (1) encode environment ge-
ometry and appearance for localisation and motion planning,
and are (2) built from direct experience or observations of
the environment [2]. Recent work recognises the need to
also explicitly represent semantic information for decision-
making. Grinvald et al. [5] build volumetric maps that separate
structures from objects in the scene. Hughes et al. [6] organise
semantic information into a hierarchical, topological structure
that is extracted from an underlying SLAM map. However,
these are built on metric SLAM maps which can be tricky
to scale to large (kilometre-scale) areas. They also do not
interpret the scene in the context of the robot agent - e.g.
by representing the robot’s action affordances in the scene.
In view of this, this work aims to reduce reliance on metric
SLAM and encode navigational affordances, by incorporating
navigational behaviours in robot representations. Our work
shares heritage with Kuipers [7], Sepulveda et al. [9], Chen
et al. [3], all of whom propose various topological repre-
sentations that explicitly represent navigational behaviours. In
contrast with the above works, we observe that navigational
behaviours can be inferred from abstract, second-hand ‘maps’
of the environment like floor-plans, and propose a pathway to
construct our representations from such ‘maps’ as an alterna-
tive to collecting direct experience in the target environment.

III. BEHAVIOUR GRAPH DESIGN

A behaviour graph is a directed graph G = (V, E). Each
node v ∈ V represents a coarse location in the environment,
and is either a destination or changepoint node. Destination

nodes are user-specified locations that are potential goals
for the robot. These nodes may be tagged with semantic
labels identifying the nature of the destination, e.g. ‘kitchen’
or ‘foyer’. Changepoint nodes are locations at which the
robot is afforded the chance to switch between navigational
behaviours. We note that while nodes indicate coarse locations,
no metric coordinates or information are associated with each
node. Instead our system localises itself within the graph by
matching the observed layout of the environment against the
topology of the graph.

Each directed edge e ∈ E indicates connectivity between
its endpoints’ nodes, and is labelled with the navigational
behaviour needed to traverse between these nodes. For each
behaviour graph, the navigational behaviours are drawn from
a predefined set of N behaviours. While our representation
uses the set of behaviours implemented by the DECISION
controller [1], in principle the behaviour graph representation
can be easily adapted to represent different sets of behaviours.

An additional structural constraint enforced in behaviour
graphs is that for any given node v, each outgoing edge from
v is required to have a distinct behaviour. Intuitively, this
constraint helps to avoid the ambiguity of having different
outgoing edges labelled with the same behaviour leading to
different destinations.

IV. BUILDING AND NAVIGATING WITH BEHAVIOUR
GRAPHS

Figure 1 describes a system that first constructs behaviour
graphs from commonly available 2D ‘maps’ of unseen envi-
ronments, then employs these behaviour graphs to navigate in
the unseen environments. We refer to these as the offline map-
reading and online behaviour-based navigation subsystems
respectively.

A. Offline map-reading

The goal of the offline map-reading subsystem is to parse
various top-down 2D ‘map’ representations into behaviour
graphs. This process can be decomposed into 2 steps: (1)
node prediction, followed by (2) edge prediction using the
previously predicted nodes. We design two neural networks
ϕnode and ϕedge to be used for each step respectively. This
subsystem is thus a learnable pipeline that can be trained to
adapt to different ‘map’ types - e.g. floor-plans, hand-drawn
maps or satellite maps.

Node prediction: The node prediction algorithm takes a
2D ‘map’ as input, and outputs the pixel locations of the
changepoints in the ‘map’. It makes use of ϕnode, a CNN that
takes in a 2D patch from the ‘map’ and outputs the likelihood
that the patch centre is a changepoint. ϕnode is learned from a
set of ‘maps’ manually annotated with behaviour graphs, and
is trained to classify annotated changepoints with the cross-
entropy loss. The node prediction algorithm works by first cre-
ating a dense regular grid of points across the ‘map’, extracting
and scoring patches centred on each point using ϕnode, then



Fig. 1. Overall system architecture. Behaviour graphs are constructed first through offline map-reading, then used for online behaviour-based navigation.

thresholding the points and performing a clustering-based non-
maximal suppression step. The points remaining at the end are
the detected changepoints in the ‘map’.

Edge prediction: The edge prediction algorithm takes as
input a 2D ‘map’ along with the predicted changepoints on this
‘map’, and outputs the predicted edges of the behaviour graph.
It makes use of ϕedge, a CNN that takes as input a patch from
the ‘map’ centred on the ith predicted changepoint pi along
with the locations of pi’s K-closest neighbouring nodes, and
outputs the set of outgoing edges from pi. ϕedge predicts a
K × N cost matrix C, where ckn is a cost representing how
likely it is that an edge exists between pi and neighbour node k
with behaviour n. To enforce the behaviour graph’s structural
constraint, we follow [8] and run the Sinkhorn algorithm with
dustbin scores, then threshold the output matrix to obtain
the predicted outgoing edges from pi. To predict all of the
edges in the behaviour graph, we run ϕedge on every predicted
changepoint and destination node in the ‘map’.

B. Online behaviour-based navigation

Given a behaviour graph of the unseen environment, the
online behaviour-based navigation subsystem aims to plan a
path to a specified goal node, and navigate the robot safely
there. The subsystem comprises 3 main components: the
controller, the planner and the graph localisation system.

Controller: The robot’s navigational behaviours are im-
plemented in the controller, and we employ the DECISION
controller [1] which provides 3 behaviours: {turn-left,
go-forward, turn-right}. Each behaviour in the DE-
CISION controller takes in a stream of RGB observations,
and generates linear and angular velocity commands.

Planner: The planner takes in a goal node - either specified
by node index, or by semantic label - and finds a path from the
current location to it with Dijkstra. This path is represented as
a sequence of navigational behaviours for the robot to execute,
e.g. {go-straight, turn-left, go-straight, ...}.

Graph localisation system: We adapt Graph Localisation
Networks (GLN) [3] to localise on the behaviour graph. In

GLNs, localisation is defined as finding which edge in the
graph we are on. This is better defined since the robot may
not always be near a node, but will always be executing
an action on an edge while navigating. The GLN takes as
input an RGB-D image stream, along with a crop of the
behaviour graph around the robot’s last known position, and
outputs the current edge the robot is on. We adapt the GLN
to also predict our closeness to the next changepoint, allowing
us to fluidly switch between behaviours when navigating.
The GLN consists of a CNN that first converts a temporal
sequence of RGB images into a feature vector, then passes this
feature to a GNN which performs several rounds of message-
passing over the behaviour graph crop. Intuitively, the GLN
is matching the layout and navigational affordances of the
environment observed from the RGB sequence against the
behaviour graph’s topology to localise the robot.

V. EXPERIMENTS

We present preliminary results that answer the following
questions: (Q1) How well can the offline map-reading subsys-
tem extract behaviour graphs from a variety of ‘map’ types?
(Q2) Can the extracted behaviour graphs be effectively used
for robot navigation?

A. Evaluating offline map-reading

We test the offline map-reading system on hand-drawn
maps (HM), floor-plans (FP) and satellite maps (SM), and
compare its predictions against manually annotated ground
truth behaviour graphs. Precision and recall results for both
node and edge predictions are shown in Table I.

Node predictions generally perform well across all ‘map’
types. We observe that node prediction reliably identifies
changepoints at sharp turnings and junctions. A large pro-
portion of the failure cases occur due to under- or over-
prediction of changepoints in open areas, where the structure
of the environment and the behaviours needed to navigate
it are not as well-defined. In the case of edge prediction,
many of the failure cases occur because the edge’s behaviour
label is wrongly assigned, even though the edge itself is



TABLE I
CLASSIFICATION PERFORMANCE OF NODE/EDGE PREDICTION

Changepoints (nodes) Behaviours (edges)
Metrics HM FP SM HM FP SM
Precision 0.848 0.732 0.865 0.667 0.630 0.761

Recall 0.975 0.779 0.621 0.535 0.494 0.662

TABLE II
EVALUATING NAVIGATION PERFORMANCE WITH PREDICTED BEHAVIOUR

GRAPHS FROM HAND-DRAWN MAPS (HM) AND FLOORPLANS (FP)

Test settings SR-HL PC-HL SR-Nav PC-Nav

Easy HM 80.0 90.0 80.0 90.0
FP 68.8 78.1 62.5 71.9

Med HM 75.0 87.5 62.5 75.0
FP 37.5 65.6 37.5 65.6

Hard HM 50.0 85.0 50.0 85.0
FP 50.0 80.0 50.0 80.0

correctly predicted. In particular, a large proportion of such
cases involves a go-forward behaviour being confused with
a turn behaviour. In the next section, we show that despite
some behaviour mis-classifications, the behaviour graphs re-
tain enough useful information to enable effective navigation.

B. Evaluating real-world navigation

We deploy online behaviour-based navigation on a Spot
quadruped with Intel Realsense cameras and an AGX Xavier.
The system undergoes testing in an indoor office setting
using graphs inferred by the offline map-reading subsystem.
The tests have 3 difficulty levels: Easy (2-3 changepoints,
10-25m), Medium (4-5 changepoints, 30-50m), Hard (6-10
changepoints, 50-100m). We evaluate performance using Suc-
cess Rate (SR) and Plan Completion (PC) [3]. We report SR
and PC metrics for the high-level planning and localisation
modules (HL) and the entire navigation stack (Nav). For HL
metrics, the task terminates only if an incorrect behaviour is
issued or localisation fails, and we manually intervene if the
controller fails to execute the commanded behaviour correctly.
In Nav metrics, the task also terminates if the controller fails.

We find that PC is high across all map types and difficulty
levels, indicating that the system is able to successfully switch
behaviours most of the time, and succeeds in navigating most
of the way on the test routes. This also suggests that the
noisy inferred graphs with mis-classified behaviours can still
be effective representations for navigation.

VI. CONCLUSION

We proposed behaviour graphs, a compact, graphical,
semantic-contextual representation, where nodes are coarse
locations and edges represent the navigational behaviours used
to transit between the nodes. We proposed a ‘map-reading’
pipeline to extract such graphs from commonly available
‘maps’, and showed its efficacy on a variety of ‘map’ types.
Finally we demonstrated that behaviour graphs enable effective
navigation on a real robot, even without metric representations
or positioning.
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Vladlen Koltun, and Alexey Dosovitskiy. End-to-end
driving via conditional imitation learning. In 2018 IEEE
International Conference on Robotics and Automation,
ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages
1–9. IEEE, 2018. doi: 10.1109/ICRA.2018.8460487.
URL https://doi.org/10.1109/ICRA.2018.8460487.

[5] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Ca-
dena, R. Siegwart, and J. Nieto. Volumetric Instance-
Aware Semantic Mapping and 3D Object Discovery.
IEEE Robotics and Automation Letters, 4(3):3037–3044,
July 2019. ISSN 2377-3766. doi: 10.1109/LRA.2019.
2923960.

[6] Nathan Hughes, Yun Chang, Siyi Hu, Rajat Talak, Ru-
maisa Abdulhai, Jared Strader, and Luca Carlone. Foun-
dations of spatial perception for robotics: Hierarchical
representations and real-time systems, 2023.

[7] Benjamin Kuipers. The spatial semantic hierarchy. Arti-
ficial Intelligence, 119:191–233, 04 2000. doi: 10.1016/
S0004-3702(00)00017-5.

[8] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal-
isiewicz, and Andrew Rabinovich. SuperGlue: Learning
feature matching with graph neural networks. In CVPR,
2020.

[9] Gabriel Sepulveda, Juan Carlos Niebles, and Álvaro
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