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Abstract—Enriching the robot representation of the opera-
tional environment is a challenging task that aims at bridging
the gap between low-level sensor readings and high-level seman-
tic understanding. Having a rich representation often requires
computationally demanding architectures and pure point cloud
based detection systems that struggle when dealing with everyday
objects that have to be handled by the robot. To overcome these
issues, we propose a graph-based representation that addresses
this gap by providing a semantic representation of robot environ-
ments from multiple sources. In fact, to acquire information from
the environment, the framework combines classical computer
vision tools with modern computer vision cloud services, ensuring
computational feasibility on onboard hardware. By incorporating
an ontology hierarchy with over 800 object classes, the framework
achieves cross-domain adaptability, eliminating the need for
environment-specific tools. The proposed approach allows us to
handle also small objects and integrate them into the semantic
representation of the environment. The approach is implemented
in the Robot Operating System (ROS) using the RViz visualizer
for environment representation. This work is a first step towards
the development of a general-purpose framework, to facilitate
intuitive interaction and navigation across different domains.

I. INTRODUCTION

In recent years, the field of robotics has witnessed sig-
nificant advancements in perception capabilities, thanks to
the proliferation of sensors and computer vision techniques.
However, bridging the gap between low-level sensor readings
and high-level semantic understanding remains a challenge.
To this end, we propose a framework, in its early stages, that
tackles this gap using a graph representation to connect sensor
data with a semantic representation of the environment.

To be able to have good precision in object detection and
achieve computationally acceptable performance on resource-
constrained robotic hardware, our approach combines classical
computer vision tools with modern computer vision cloud
services. By leveraging the power of cloud computing, we
can offload intensive processing tasks and ensure real-time re-
sponsiveness even on limited onboard hardware. Since robots
often need to deal with small objects in the environment, we
adopted the cloud-vision system to have high precision on
single objects in the environment.

One of the major advantages of our framework lies in
its ability to be cross-domain and adaptable to different
environments without requiring the development of specific
customizations for each scenario. This is achieved through the
incorporation of an ontology hierarchy, encompassing more
than 800 object classes. We integrated the remote hierarchy

Fig. 1. The obtained 3D scene representation in RViz with the exploration of
a small portion of the environment. The objects are delimited by the bounding
boxes (obtained from the cloud computation) fused with the point cloud
information. After this, the corresponding graph representation is generated.

with the local ontology to obtain a unified graph representation
that can be used in the robot’s tasks. By using such a
comprehensive ontology, our framework can handle diverse
environments and objects, facilitating seamless navigation and
interaction across various contexts.

To semantically represent the robot’s environment, we em-
ploy a set of entity classes to define objects and their attributes,
while a graph representation is utilized to establish connections
between the environment’s entities. Such representation can be
then exploited also to perform many Human-Robot Interaction
tasks, for example in unexplored environments. Another sce-
nario of application is in exploring and storing the information
of a scene at different time frames to capture the temporal
evolution of an environment (ideally, humans could ask the
robotic agent information related to a specific time instance,
like when the room was tidied rather than the actual version
of the environment) and this can also be studied within the



Fig. 2. On the left: population in the RViz visualizer of the objects detected thanks to Google Cloud’s API. On the right, the graph extracted from the
underlying relations between objects, and between objects and their properties. Different colors mean different semantic groups of the nodes: materials, shapes,
objects and colors.

Continual Learning framework.
We implement the proposed architecture on the Robot

Operating System (ROS) and use the RViz visualizer, allowing
for intuitive visualization and interaction with the environment.
An example of this visualization can be seen in Fig. 1. The
platform used is the TIAGo robot, manufactured by PAL
Robotics1.

The rest of this paper is organized as follows: Section 2
provides a brief overview of related work in semantic rep-
resentation in robotics. Section 3 elaborates on our proposed
framework, highlighting the graph-based representation and
ontology hierarchy, focusing on the integration with ROS and
the chosen platform. Section 4 presents concluding remarks.

II. RELATED WORK

Semantic representation in robotics is a vital area of re-
search, enabling robots to comprehend and interact with their
environment effectively. Various approaches have been pro-
posed to bridge the gap between sensor data and semantic
understanding. Object recognition algorithms and scene un-
derstanding techniques [3] are commonly employed to extract
high-level semantic information from sensor data, facilitating
intelligent decision-making by robots.

In last years, graph-based approaches have gained pop-
ularity in robotics due to their ability to capture complex
relationships and dependencies within the environment. By
representing the environment as a graph, these frameworks
provide a structured representation that facilitates semantic
understanding and reasoning. Graph-based frameworks have

1https://pal-robotics.com/

been successfully applied to object detection [11] and scene
parsing [7], enabling robots to perceive and interpret their
surroundings effectively. 3D scene graphs have been presented
and used in [1], [6] to represent 3D environments. In those,
nodes represent spatial concepts at multiple levels of abstrac-
tion and edges represent relations between concepts. One of
the limitations in building such a representation automatically
has been represented by the computational costs. To overcome
such issues, recently, in [5] the authors introduced Hydra,
capable to build incrementally a 3D scene graph from sensor
data in real time thanks to the combination of novel online
algorithms and a highly parallelized perception architecture.
Another approach, capable of incrementally building the scene
graph but also aggregating PointNet[9] features from primitive
scene components using graph neural network has been pro-
posed in [10]. In this, an attention mechanism has also been
proposed to deal with missing graph data in incremental recon-
struction scenarios. When dealing with local approaches, the
set of objects that are detectable is quite limited due to the lim-
ited availability in hosting large neural network models. To this
end, in order to guarantee cross-domain adaptability through a
large set of detectable objects and computational sustainability
on robot CPUs, cloud services have been adopted as an
addition to the local perception pipeline. To address this
challenge, cloud services for computer vision, such as Google
Cloud Vision2, have emerged as viable solutions in robotic
applications [4]. By leveraging cloud services, robots can
offload processing tasks, enabling real-time perception even on
resource-constrained hardware [8]. By relying on this platform

2cloud.google.com/vision



Fig. 3. Part of the hierarchy class from Google Cloud Vision. From the
entity, the father of all the entities, more than 800 classes are provided. The
full set of classes is available at https://storage.googleapis.com/openimages/
2018 04/bbox labels 600 hierarchy visualizer/circle.html

we fused the remote hierarchy with the local ontology to map
the environment obtaining a unified graph representation that
can be used for robot navigation and object localization tasks.
Moreover, with respect to the state of the art, we are working
on a different level of detail. In this way, we are able to include
in the scene representation a wider variety of objects, thus
expanding the set of future possible human-robot interaction
scenarios.

III. METHODOLOGY

A. Entity Representation and Hierarchy

Dealing with hierarchies of concepts with too many entries
can be very difficult to handle, especially when cross-domain
applications are involved. Hierarchical ontologies that include
very deep levels of details can be composed of thousands of
classes, thus there is a bigger risk of miss-classifying the
objects in the real world that the robotic agent can come
across. Choosing an adequate level of detail is therefore a
key aspect for robots that are set to explore different domains.
It is desired that these agents should be able to recognize
objects and properties of such objects (for example, shapes and
materials) that an average human participant in the interaction
should recognize. To this end, the proposed approach exploits
Google Cloud Vision APIs and their underlying taxonomy.
The main idea behind this choice is that for a robotic agent
that should eventually enter in contact with some humans,

is not requested to deal with very detailed concepts that the
human agent could not be aware of, and therefore an ontology
hierarchy based on everyday-life objects and entities (even if
cross-domain) is enough. This taxonomy can be observed in
Fig. 3. Such hierarchy is composed as follows:

• the root is labelled as Entity, from which every other
concept is derived;

• the first level of descendants consists on some basic gen-
eral concepts that group several categories like Animal,
Vehicle, Building and so on;

• from this point, the hierarchy is refined in a non-
homogeneous fashion, with some classes refined more
times than others before reaching the leaf concepts of
the tree;

• at the end of the hierarchy there are the most basic
concepts, like Hammer, Dishwasher and Bee.

For the purposes of this research, classes and concepts con-
cerning animals and people were removed. Despite this, the
resulting taxonomy is still composed of more than 800 classes,
which we considered a suitable amount for this application.

In addition to the main class, Google Vision APIs are able
to provide of additional boundary information of the detected
object. The challenge with this information is that comes all
together and in an unstructured manner. It is important that
concepts with different semantics (e.g. the object class and
the color, or the material) are treated differently. To this end,
we extended the labels provided by Google by reorganizing
them in an ad-hoc augmented ontology: in this ontology, every
concept is represented in the format ’name.e’, in which the
’e’ letter changes depending on what is the semantic on the
information we are representing. We have distinguished 4
main groups of concepts: ’.o’ stands for objects (i.e. ’hat.o’);
’.m’ stands for material (’plastic.m’); ’.s’ stands for shape
(’cube.s’); ’.c’ stands for color (’red.c’). With this organization,
we are also able to express relations between concepts: a
detected blue chair in the environment is translated as the triple
”chair.o ObjHasColor blue.c”; and since the same object can
hold multiple relations (”chair.o ObjHasColor blue.c” but also
”chair.o ObjHasMaterial plastic.m”), this means that even few
images of the environment can produce numerous triples that
are then stored and represented within a knowledge graph.
All the possible features that are assigned to the objects of
the world can come from different sources. The ones that are
hard to perceive locally by the robot (like materials of objects)
are extracted entirely in cloud, while others are obtained
by generalizing and abstracting from other objects using an
approach derived by [2]. An example of the output of the
system can be seen in Fig. 2, while the architecture can be
observed in Fig. 4.

B. ROS Architecture

In the lower portion of the Fig. 4, it is possible to observe
the pipeline of operations that involves the depth images that
come from the TIAGo robot’s RGB-D camera. Initially, from
each image, the more relevant point clouds are extracted and
referenced. These point clouds, however, are expressed in the

 https://storage.googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy_visualizer/circle.html
 https://storage.googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy_visualizer/circle.html


Fig. 4. The pipeline presented in this work. The local and remote perception branches lead to a unified graph representation of the environment.

robot reference frame and therefore are projected in the map
reference frame. Then, from these point clouds the respective
clusters are computed using the Open3D library, and for each
cluster, a centroid is computed, in order to have a single
point of reference for each of them. Finally, a correspondence
between the bounding boxes detected by Google’s APIs and
the computed centroid is made in order to keep only the
meaningful objects for that iteration. Such objects are then
projected in RViz with apposite markers and, in the end, thanks
to the information that comes from the knowledge graph, the
markers are linked in order to form a topological graph of the
objects in the environment.

IV. CONCLUSION

In this paper, we have presented a first step in building a
software system that fuses classical computer vision tools and
cloud computer vision services to obtain a semantic repre-
sentation of the environment. We have ensured computational
feasibility for onboard hardware and high performance in
object detection accuracy and capability. Using a graph-based
approach that comprehends the full set of objects of the Google
Cloud Vision detector, we integrate an ontology hierarchy,
consisting of 800+ object classes. This has enabled cross-
domain adaptability and eliminated the need for developing
specific tools for different environments.

This is a first step in the implementation of a blended
system, since, for example, there is plenty of room to improve
the mapping between bounding boxes classified from the cloud
service and the mapping on the point cloud depth. In fact,
the majority of the issues come when dealing with partial
occlusions in the detected objects. To this end, we aim to
improve the integration between the local representation and
the cloud-computed one, taking into account not only clusters
of point clouds but preserving the shapes obtained from them.
We also plan to explore the integration of machine learning
techniques to improve the accuracy and robustness of semantic
understanding in dynamic environments.

Overall, the proposed approach opens up avenues for en-
hanced perception and interaction capabilities of robots in
various domains. By leveraging the power of semantic rep-
resentation, we envision a future where robots can under-
stand and navigate complex environments, enabling seamless
human-robot interaction and collaboration in diverse settings.
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