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Abstract—Understanding the world in terms of objects and
the possible interactions with them is an important cognition
ability, especially in robotic manipulation. However, learning
such a structured world model, which also allows to accurately
control the agent, remains a challenge. To address this, we
propose FOCUS, a model-based agent that learns an object-
centric world model, thanks to a novel exploration bonus that
stems from the object-centric representation. Evaluating our
approach on manipulation tasks across different settings, we
show that object-centric world models allow the agent to solve
tasks more efficiently and enable consistent exploration of robot-
object interactions. Using a Franka Emika robot arm, we also
showcase how FOCUS could be adopted in real-world settings.
Project website: https://focus-manipulation.github.io/

I. INTRODUCTION

For robot manipulators, the tasks we perform as humans
are extremely challenging due to the high level of complexity
in the interaction between the agent and the environment. In
recent years, deep reinforcement learning (RL) has shown to
be a promising approach for dealing with these challenging
scenarios [28, 35, 23, 31, 27, 10].

Among RL algorithms, model-based approaches aspire to
provide greater data efficiency, compared to the model-free
counterparts [13, 17]. Adopting world models [16, 19], i.e.
generative models that learn the environment dynamics by
reconstructing the agent’s observations, model-based agents
have shown impressive performance across several domains
[19, 41, 20], including real-world applications, such as robotics
manipulation and locomotion [50].
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However, world models that indistinctly reconstruct all
information in the environment can suffer from several failure
modes. For instance, in visual tasks, they can ignore small,
but important features for predicting the future, such as little
objects [46], or they can waste most of the model capacity
on rich, but potentially irrelevant features, such as static
backgrounds [7]. In the case of robot manipulation, this
is problematic because the agent strongly needs to acquire
information about the objects to manipulate in order to solve
tasks.

Another challenge in RL for manipulation is engineering
reward functions, able to drive the agent’s learning toward task
completion, as attempting to design dense reward feedback
easily leads to faulty reward designs [1, 5, 26, 39]. One
solution is to adopt sparse reward feedback, providing a
positive reward only for successful task completion. However,
these functions are challenging to optimize with RL, due to
the difficulty of finding rewards in the environment and thus
require appropriate exploration strategies, for which previous
work has resorted to artificial curiosity mechanisms [36, 42].

Humans, on the other hand, tend to develop a structured
mental model of the world by interacting with objects, regis-
tering specific features associated with objects, such as shape,
color, etc [22, 12]. Since infancy, toddlers learn this by actively
engaging with objects and manipulating them with their hands,
discovering object-centric views that allow them to build an
accurate mental model [49, 48, 11].

Inspired by the principle that objects should be of primary
importance in the agent’s world model, we present FOCUS, a
model-based RL agent that learns an object-centric represen-
tation of the world and is able to explore object interactions.

Fig. 1: FOCUS. Overview of the components of the object-centric world model learned by FOCUS. (Left) Overall composition
of the model. (Right) Detailed view of the decoder, including the object latent extractor and object decoder.
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Contributions Our contributions can be summarized as:
• A new object-centric latent dynamics model, which learns

the dynamics of the environment, while discriminating
object representations into distinct latent vectors.

• An object-centric exploration strategy, which encourages
interactions with the objects, by maximizing the entropy
of the latent object representation, that facilitates finding
sparsely rewarded goals in the environment.

• We show the effectiveness of our object-centric model,
qualitatively showing that FOCUS captures crucial infor-
mation about objects and that the representation allows
faster learning of manipulation tasks.

Background material relative to the work can be found in
Appendix A.

II. METHOD

Reinforcement Learning. In RL, the agent receives inputs
x from the environment and can interact through actions a.
The objective of the agent is to maximize the discounted sum
of rewards

∑
t γ

trt, where t indicates discrete timesteps. To
do so, RL agents learn an optimal policy π(a|x) outputting
actions that maximize the expected cumulative discounted
reward over time, generally estimated using a critic function,
which can be either a state-value function v(x) or an action-
value function q(x, a) [17, 13]. World models [16] additionally
learn a generative model of the environment, capturing the
environment dynamics into a latent space, which can be used
to learn the actor and critic functions using imaginary rollouts
[19, 20] or to actively plan at each action [43, 21, 41], which
can lead to higher data efficiency in solving the task.

Object-centric World Model. The agent observes the
environment through the inputs xt = {ot, qt} it receives
at each interaction, where we can distinguish the (visual)
observations ot, e.g. camera RGB and depth, from the pro-
prioceptive information qt, e.g. the robot joint states and
velocities. This information is processed by the agent through
an encoder model et = f(xt), which can be instantiated as the
concatenation of the outputs of a CNN for high-dimensional
observations and an MLP for low-dimensional proprioception.

The world model aims to capture the dynamics of the
inputs into a latent state st. In previous work, this is achieved
by reconstructing the inputs using an observation decoder.
With FOCUS, we are interested in separating object-specific
information into separate latent representations sobjt . For this
reason, we instantiate two object-conditioned components: an
object latent extractor and an object decoder.

Models. Overall, the learned world model, shown in Fig. 1
is composed of the following components:

Encoder: et = f(xt),

Posterior: pϕ(st+1|st, at, et+1),

Prior: pϕ(st+1|st, at),
Proprio decoder: pθ(q̂t|st),

Object latent extractor: pθ(s
obj
t |st, cobj),

Object decoder: pθ(ô
obj
t , wobj

t |sobjt ).

We adopt a recurrent state-space model (RSSM) [18] for the
dynamics components, i.e. prior and posterior, which extracts
a latent state st made of a deterministic and a stochastic
component. Proprioceptive information q̂t is decoded out of
the latent state st, using an MLP.

For each object in the scene, the object latent extractor
receives the world model latent state st and a vector identify-
ing the object cobj , and extracts an object-centric latent sobjt .
Given such an object latent, the object decoder reconstructs
the object-related observation information ˆ

oobjt , where the
information that is irrelevant to the object is masked out. The
object decoder also outputs one-dimensional “unnormalized
weights” wobj

t , which represent object-specific per-pixel logits
for segmenting the objects. The overall scene segmentation
is obtained by applying a softmax among all object weights,
where each pixel is assigned to the object that outputs the
highest weight (see following Objective paragraph)1. For the
object-conditioning vector cobj we adopt a one-hot vector
identifying the object instance.

Objective. The model is trained end-to-end by minimizing
the following loss:

Lwm = Ldyn + Lproprio + Lobj. (1)

The dynamics minimizes the Kullback–Leibler (KL) diver-
gence between posterior and prior:

Ldyn = DKL[pϕ(st+1|st, at, et+1)||pϕ(st+1|st, at)]. (2)

The proprioceptive decoder learns to reconstruct proprio
states, by minimizing a negative log-likelihood (NLL) loss:

Lproprio = − log pθ(q̂t|st) (3)

The object decoder learns to reconstruct object-centric infor-
mation, outputting “object weights” for the segmentation mask
and reconstructing observations. The observation is masked via
an object-specific mask mi

t, to focus only on the i-th object
information in the loss. The object decoder loss is:

Lobj = − log p(m̂t)︸ ︷︷ ︸
mask

− log
N∑
i=0

mi
tpθ(x̂

i
t|sit)︸ ︷︷ ︸

masked reconstruction

(4)

where the overall segmentation mask is obtained as:

m̂t = softmax(w1
t , ..., w

N
t ) (5)

with N being the object instances. By minimizing the NLL
of masked reconstruction, the object-decoder ensures that
each object latent si focuses on capturing only its relevant
information, as the reconstructions obtained from the latent
are masked per object. Furthermore, objects compete for
occupying their correct space in the scene (in pixel space),
through the mask loss.

Further details about the model architecture, the objective,
and the optimization process are provided in Appendix.

1The scene, with objects masked out, is also considered a ”special object”.



Object-centric Exploration. State maximum entropy ap-
proaches for RL [33, 45, 29] learn an environment repre-
sentation, on top of which they compute an entropy estimate
that is maximized by the agent’s actor to foster exploration.
Given our object-centric representation, we can incentivize
exploration towards object interactions and discovery of novel
object views, by having the agent maximize the entropy over
the object latents.

In order to estimate the entropy value over batches, we apply
a K-NN particle-based estimator [47] on top of the object
latent representation. By maximizing the overall entropy, with
respect to all objects in the scene, we derive the following
reward for object-centric exploration:

rexpl =
N∑

obj=0

robjexpl

where robjexpl(s) ∝
K∑
i=1

log
∥∥∥sobj − sobji

∥∥∥
2

(6)

where sobj is extracted from s using the object latent extractor,
sobji is the i-th nearest neighbor to sobj .

Crucially, as we use the world model to optimize actor
and critic networks in imagination [19], the latent states in
Equation 6 are states of imaginary trajectories, generated by
the world model by following the actor’s predicted actions.

III. EXPERIMENTS

FOCUS object-centric world model can be used to im-
prove task performance in robotics manipulation tasks and
to meaningfully explore the environment using our object-
driven exploration bonus. Our experiments aim to assess these
qualities both qualitatively and quantitatively. Details about
both the simulation and the real world setup are provided in
appendix.

Fig. 2: Manipulation tasks. Comparing FOCUS and Dream-
erV2 over dense supervised manipulation tasks. (3 seeds)

Supervised tasks. In Figure 2, we compare the performance
in terms of task episodic rewards that are obtained by FOCUS
compared to DreamerV2 on supervised dense-reward versions
of the tasks. The only difference between the two methods
is the world model, so this study compares the quality of
the world model to learn control policies. We observe that
FOCUS converges faster across all tasks, reaching equal or
better performance compared to DreamerV2.

Exploring object interactions. To evaluate the performance
of FOCUS exploration approach, we picked exploration met-
rics that are related to the interaction with the object and the
ability to find sparsely rewarded areas in the environment.
Further details about those are provided in appendix.

In Table I, we compare FOCUS against two exploration
strategies: Plan2Explore (P2E) [44] and a combination of the
DreamerV2 algorithm and Active Pre-training (APT) [29, 41].
We also test a DreamerV2 agent, which aims to maximize
sparse rewards in the environment 2.

We find that FOCUS shines across all simulation environ-
ments, showing strong object interaction performance, and
outperforming all other approaches in most metrics. Dream-
erV2 manages to find sparse rewards, and thus explore object

2DreamerV2 is still able to explore, with limited capacity, thanks to the
actor entropy term in the actor’s objective [19].

Contact Pos Disp Ang Disp Placement Reward
Up ↑ ↓ ← → P L T

Red cube

FOCUS 0.04 0.15 1.86 3.5 37.45 0.06 0.15 0.01 0.67 - -
Dreamer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - -

P2E 0.0 0.0 0.01 0.0 0.15 0.0 0.0 0.0 0.0 - -
APT 0.0 0.01 0.15 0.01 0.11 0.0 0.0 0.0 0.0 - -

RG cubes

FOCUS 0.1 0.4 4.46 0.0 0.0 0.53 0.0 0.0 - 0.0 -
Dreamer 0.0 0.01 0.01 0.0 0.0 0.16 0.0 0.0 - 0.0 -

P2E 0.0 0.01 0.01 0.0 0.0 0.3 0.0 0.0 - 0.0 -
APT 0.01 0.03 0.25 0.06 0.0 5.05 0.0 0.03 - 2.0 -

Faucet

FOCUS 0.12 - 1.22 - - - - - - - 101.67
Dreamer 0.0 - 0.01 - - - - - - - 0.0

P2E 0.1 - 1.23 - - - - - - - 35.33
APT 0.08 - 0.98 - - - - - - - 34.33

Banana

FOCUS 0.08 0.38 3.5 1.31 25.28 0.72 6.08 7.12 38.67 27.0 -
Dreamer 0.0 0.0 0.06 0.04 0.22 0.02 0.16 0.29 2.67 0.67 -

P2E 0.02 0.11 0.97 0.64 8.48 0.22 4.78 4.14 19.67 14.67 -
APT 0.01 0.04 0.4 0.24 2.0 0.98 1.3 2.1 6.67 5.33 -

Master Chef Can

FOCUS 0.05 0.49 5.78 0.17 145.66 28.57 61.51 62.8 507.67 2.67 -
Dreamer 0.02 0.26 3.04 0.08 85.68 24.02 24.34 46.35 628.67 0.33 -

P2E 0.03 0.29 3.26 0.12 69.95 30.63 29.72 36.0 207.67 2.33 -
APT 0.01 0.14 1.56 0.06 23.64 23.74 15.88 13.52 68.33 1.67 -

TABLE I: Object exploration. Comparing exploration metrics across multiple environments and tasks. Dreamer is the only
agent that aims to maximize the task’s sparse rewards. All other approaches only perform unsupervised exploration. On the
right sparse rewards obtained during the exploration phase. (3 seeds)



Fig. 3: Finetuning. Comparing adaptation performance of
FOCUS and other exploration strategies in sparse-reward
manipulation tasks. (3 seeds)

interactions consistently, only in the master chef can ‘push’
environment, but struggles elsewhere. APT and P2E tend to
explore object interactions more consistently than DreamerV2,
but generally move objects less than FOCUS and tend to find
sparse rewards, i.e. achieving placement or task rewards, more
rarely.

Model finetuning. After exploring the environment for 2M
environment steps, we adapt the exploration approaches, al-
lowing them an additional number of environment interactions.
During this stage, if the exploration stage was fruitful, the
agent may already know where the rewards can be found
in the environment, despite not having actively attempted to
maximize them.

In order to speed up the finetuning stage, task-driven actor
and critic networks are pre-trained in imagination, during the
exploration stage, using the reward predictor trained on the
exploration stage rewards. These actor and critic networks
are then fine-tuned during the adaptation stage. This setup is
similar to the adaptation experiments presented in [44].

To provide an idea of how frequently the agents were able
to find sparse rewards during the exploration stage, we provide
aggregate metrics on the right of Table I. The adaptation
curves, showing episode rewards over time, are presented in
Figure 3. Results clearly show that FOCUS is the only method
that makes significant progress across all tasks. As the figures
in the Table show, this is mainly due to the fact that FOCUS
was also the approach that more frequently found rewards

during the exploration stage, making finetuning to downstream
tasks easier.

Reconstructions. In order to qualitatively assess the ca-
pacity of FOCUS to better capture information about the
objects, we compare reconstructions from FOCUS to the
non-object centric world model of DreamerV2, on random
trajectories, in Figure 4. We observe that, while DreamerV2
can reconstruct the robot and the background, it struggles
to accurately reconstruct objects. The banana is reduced to
a yellow spot, while the can is almost invisible against the
background. FOCUS, instead, reconstructs the objects more
accurately, by capturing the object information in the object
latents. FOCUS reconstructions shown are the result of the
merging of all object and background RGB images into a
single one.

Real-world. FOCUS can also be deployed to real-world
settings. The main issue with applying FOCUS in the real
world comes from the absence of segmentation masks. How-
ever, thanks to recent progress in the study of large-scale
vision models, the issue can be easily circumvented using
a pre-trained segmentation model. For these experiments,
we adopted the Segment Anything Model (SAM) [25], to
recognize the bricks in the scene, after providing a single
labeled sample [3]. In Figure 4, we show that our method
effectively captures object information, though sometimes
sacrificing information about the gripper. When compared to
DreamerV2, it can be noticed how the decoding of objects is
of higher precision.

IV. CONCLUSION

We presented FOCUS, an object-centric model-based agent
that can learn manipulation tasks more efficiently and easily
discovers interactions with objects. One major limitation of our
method is reliance upon the segmentation information, used
in the object decoder’s loss, which is not easily available to
a real robot. In order to overcome such limitations, we aim
to investigate unsupervised strategies for scene decomposition
[51, 30]. We also aim to extend the evaluation further, with
more extensive real-world experimentation and benchmarking.

Fig. 4: Reconstructions. Comparing reconstructions between FOCUS’s object-centric model and DreamerV2’s world model.
(Left) Maniskill banana environment. (Middle) Robosuite red and green cube environment. (Right) Real-world setup with 3
colored blocks.
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Fig. 5: Simulation environments. Visualization of the environments we applied FOCUS on. (a-b) from robosuite. (c-e) from
ManiSkill2.

APPENDIX

A. Background material

Exploration. Solving sparse-reward tasks is a hard problem
in RL. Inspired by artificial curiosity theories [42, 36], several
works have designed exploration strategies for RL [37, 32, 40].
Other explorations strategies that have shown great success
over time are based upon maximizing uncertainty [38, 44], or
the entropy of the agent’s state representation [29, 45, 33].

Object-centric. Decomposing scenes into objects can en-
able efficient reasoning over high-level building blocks and
ensure the agent hones in on the most relevant concepts
[8]. Several 2D object-centric representations, based on the
principle of representing objects separately in the model, have
been studied in the last years[30, 14, 2, 34, 6]. Inspired by the
idea that such representations could help exploit the underlying
structure of our control problem [9, 8], we propose a world
model with an object-centric structured representation [24] that
we show could strongly aid robotics manipulation settings.

B. Model details

DreamerV2 The architecture adopted for DreamerV2 is
relevant to the one documented by [19]. Model states have both
a deterministic and a stochastic component: the deterministic
component is the 200-dimensional output of a GRU ([4],
with a 200-dimensional hidden layer; the stochastic component
consists of 32 categorical distributions with 32 classes each.
States-based inputs such as the proprioception, the encoder,
and the decoder are 4-layer MLP with a dimensionality of
400. For pixels-based inputs, the encoder and decoder follow
the architecture of DreamerV2 [19], taking 64 × 64 RGBD
images as inputs. Both encoder and decoder networks have a
depth factor of 48. To ensure stable training during the initial
phases, we adopt a technique from [20] where the weights of
the output layer in the critic network are initialized to zero.
This approach contributes to the stabilization of the training
process especially in the early stages of training.

Networks are updated by sampling batches of 32 sequences
of 32 timesteps, using Adam with learning rate 3e−4 for the
updates, and clipping gradients norm to 100.

FOCUS The architecture proposed is based on the im-
plementation of DreamerV2 described above. The encoding
network and the state-based decoding unit have the same
structure mentioned in Dreamer. We introduced an object

latent extractor unit consisting of a 3-layer MLP with a
dimensionality of 512. The object-decoder network resembles
the structure of the Dreamer’s decoder, the depth factor for
the CNN is set to 72. 64x64 RGBD images along with a
”segmentation weights” image are generated per each object.

Object-Centric Exploration The K-NN filter adopted for
the entropy approximation consist of averaging the distance
from the K-nearest neighbors (K = 30).

Objective In the objective of FOCUS we describe object-
specific masks mi

t. These masks are binary images, obtained
from the entire scene segmentation mask. In practice, mt =∑

i m
i
t · argmax ci, which means the overall segmentation

mask is obtained by summing the object-specific masks,
multiplied by their object index, which can be extracted from
ci through an argmax, being ci a one-hot vector.

C. Simulation environments

We opted for two simulation environments: ManiSkill2
[15] and robosuite [52]. For the robosuite environment, we
considered a single (red) cube and a two-cube (red and green)
setup. For Maniskill2, we opted for two single YCB objects
setups (banana and master chef can), and a faucet setup (model
5007). Segmentation masks for training FOCUS’ decoder are
provided by the simulator.

In both environments, the robotic agent is a Franka arm with
7-DoF, controlled in cartesian end-effector space with fixed
gripper orientation. Gripper state (open/close) adds a degree
of freedom. For all the mentioned environments objects are
spawned at a fixed pose. Visual observations are rendered at
64x64 resolution for all the environments.

D. Real-world environment

The setup for the real-world sperimentation consist of
a Franka arm with 7-DoF, controlled in cartesian end-
effector space with fixes gripper orientation and width. In the
workspace in front of the robot, 3 colored (blue, orange, red)
blocks are present. Pixel states of the environment are acquired
through a Realsense D435. Both RGB and depth information
are collected at 64x64 resolution. Observations are captured
at 10Hz, for a total episode length of 500 frames.

E. Metrics and task rewards

To evaluate the quality of the exploration with the respect to
the objects in the scene we considered the following metrics:



• Contact (%): average percentage of contact interactions
between the gripper and the objects over an episode.

• Positional displacement (m): cumulative position dis-
placement of all the objects over an entire episode.

• Angular displacement (rad): cumulative angular displace-
ment of all the objects over an entire episode.

• Up, far, close, left, right placement: number of times the
object is moved in the relative area of the working space.

• Reward: whether the agent was able to obtain sparse
reward in the environment. The tasks analyzed are either
“lift” (L) or “push” (P) tasks, for cube and YCB objects
environments, and “turn” (T) for the faucet.

To evaluate the placement metric, we divide the workspace
in front of the robot into 5 areas, with respect to the 5 cited
directions: right, left, far, close, and up. For the Robosuite
environment, with respect to the origin of the environment (co-
inciding with the center of the table) we consider a successful
placement if the object is placed at a minimum of 0.25m up to
a maximum of 0.4m along the directions considered. For the
”up” placement the minimum threshold is reduced to 0.05m.

For the Maniskill2 environment, in the same logic, we
considered a minimum threshold of 0.4m up to a maximum of
0.5m. For the ”up” placement a minimum threshold is reduced
to 0.1m.

The definition of the task rewards for the exploration tasks
is linked to the placement definition given. Any reward is
provided till the object has been placed in the desired area.
For the lift tasks, before assigning any reward we check if the
object is grasped. The definition of the task rewards for dense
tasks is the one defined by the default implementation.



F. Extended results visualizations

(a) Red cube

(b) RG cubes

(c) Faucet



(d) Banana

(e) Master Chef Can

Fig. 6: Model reconstructions over random actions for considered environments. First row is ground truth. Second row is
FOCUS reconstruction. Last row shows DreamerV2 reconstruction.



Fig. 7: Displaying exploration metrics over time for the object exploration experiments.
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